ia a+b+c=9 and ab+bc+ca=26 the find a²+b²+c²
Answers
Answered by
54
We know the formula:
(a+b+c)² = a² + b² + c² + 2(ab+bc+ca)
Given:
a+b+c = 9 & ab+bc+ca = 26
Now putting the values in the above formula,
We get,
(9)² = a² + b² + c² + 2×26
81 = (a² +b² +c²) + 52
(a² +b²+c²) = 81-52
(a² + b² + c²) = 29 (Answer)
Follow me dear for your future doubts ✌️
Answered by
11
GIVEN :–
• a + b + c = 9
• ab + bc + ca = 26
TO FIND :–
• a² + b² + c² = ?
SOLUTION :–
• We know that –
=> (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
• So that –
=> a² + b² + c² = (a + b + c)² + 2ab + 2bc + 2ca
=> a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)
• Now put the values –
=> a² + b² + c² = (9)² - 2(26)
=> a² + b² + c² = (9)² - 2(26)
=> a² + b² + c² = 81 - 52
=> a² + b² + c² = 81 - 52
=> a² + b² + c² = 29
• Hence , The value of a² + b² + c² is 29.
Similar questions