Math, asked by arun4669, 9 months ago

ia a+b+c=9 and ab+bc+ca=26 the find a²+b²+c²

Answers

Answered by Anonymous
54

We know the formula:

(a+b+c)² = a² + b² + c² + 2(ab+bc+ca)

Given:

a+b+c = 9 & ab+bc+ca = 26

Now putting the values in the above formula,

We get,

(9)² = a² + b² + c² + 2×26

81 = (a² +b² +c²) + 52

(a² +b²+c²) = 81-52

(a² + b² + c²) = 29 (Answer)

Follow me dear for your future doubts ✌️

Answered by BrainlyPopularman
11

GIVEN :

a + b + c = 9

• ab + bc + ca = 26

TO FIND :

• a² + b² + c² = ?

SOLUTION :

• We know that –

=> (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

So that –

=> a² + b² + c² = (a + b + c)² + 2ab + 2bc + 2ca

=> a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)

• Now put the values –

=> a² + b² + c² = (9)² - 2(26)

=> a² + b² + c² = (9)² - 2(26)

=> a² + b² + c² = 81 - 52

=> a² + b² + c² = 81 - 52

=> a² + b² + c² = 29

Hence , The value of a² + b² + c² is 29.

Similar questions