Physics, asked by Anonymous, 7 months ago

Ice starts forming in a lake with water 0oC,

when atmospheric temperature is -10oC. If the

time taken for 5 mm thickness of ice to be

formed is 2 hours, then the time taken for the

thickness of ice to change from 5 mm to

20 mm, is​

Answers

Answered by rocky200216
22

\huge\sf{\gray{\underbrace{\red{QUESTION:-}}}}

⚡ Ice starts forming in a lake with water 0°C, when atmospheric temperature is -10°C . If the time taken for 5mm thickness of ice to be formed is 2 hours . Then find the time taken for the thickness of ice changes from 5mm to 20mm .

\huge\sf{\gray{\underbrace{\red{ANSWER:-}}}}

\mathcal{\gray{\underbrace{\blue{GIVEN:-}}}}

  • Ice starts forming in a lake with water 0°C, when atmospheric temperature is -10°C .

  • The time taken for 5mm thickness of ice to be formed is 2 hours .

\mathcal{\gray{\underbrace{\blue{TO\: FIND:-}}}}

  • The time taken for the thickness of ice changes from 5mm to 20mm .

\mathcal{\gray{\underbrace{\blue{DIAGRAM:-}}}}

✍️ See the above diagram .

\mathcal{\gray{\underbrace{\blue{CALCULATION:-}}}}

Let,

⚡ At “t = t”, x thickness of ice is formed as shown in figure .

⚡ And at “t = (t + dt)”, dx thickness of ice is formed as shown in figure .

⚡ Take, area of the lake is “A” .

So,

\rm{\green{Mass\:of\:water\:converted\:into\:ice\:{\atop{[in\:dt]}}\:=\:\bold{\rho\:A\:dx}\:}}

\rm{\implies\:dQ\:=\:\rho\:A\:dx\:}

\rm{\implies\:\dfrac{dQ}{dt}\:=\:\dfrac{\rho\:A\:dx}{dt}\:}

Where,

  • dQ = change in Heat .

✍️ This heat passes through the upper layer of the lake from atmosphere .

Hence, we can also write

\rm{\implies\:\dfrac{dQ}{dt}\:=\:\dfrac{\rho\:A\:dx}{dt}\:=\:\dfrac{k\:A}{x}\times{10}\:}

\rm{\implies\:\dfrac{\rho\:A\:dx}{dt}\:=\:\dfrac{k\:A}{x}\times{10}\:}

\rm{\implies\:\dfrac{\rho}{k}\times\:\int\limits_{x_1}^{x_2}\:x\:.\:dx\:=\:10\times\:\int\limits_{t_1}^{t_2}\:dt\:}

\rm{\implies\:\dfrac{\rho}{k}\:(x_2^2\:-\:x_1^2)\:=\:10\:(t_2\:-\:t_1)\:}

\rm\green{\implies\:(t_2\:-\:t_1)\:=\:\dfrac{\rho}{10\:k}\:(x_2^2\:-\:x_1^2)\:}

CASE - 1 :-

  • \rm{t_2\:=\:2h}

  • \rm{t_1\:=\:0h}

  • \rm{x_2\:=\:5mm}

  • \rm{x_1\:=\:0mm}

\checkmark\:\rm{\red{\implies\:(2\:-\:0)\:=\:\dfrac{\rho}{10\:k}\:(5^2\:-\:0^2)\:}}

\rm{\implies\:2\:=\:\dfrac{\rho}{10\:k}\times{25}\:}

\rm{\implies\:\dfrac{\rho}{k}\:=\:2\times{\dfrac{10}{25}}\:}

\rm{\implies\:\dfrac{\rho}{k}\:=\:0.8\:}----(1)

CASE - 2 :-

  • Let, \rm{t_2\:=\:T\:hours}

  • \rm{t_1\:=\:2h}

  • \rm{x_2\:=\:20mm}

  • \rm{x_1\:=\:5mm}

\checkmark\:\rm{\red{\implies\:(T\:-\:2)\:=\:\dfrac{\rho}{10\:k}\:(20^2\:-\:5^2)\:}}

\rm{\implies\:(T\:-\:2)\:=\:\dfrac{\rho}{10\:k}\:(400\:-\:25)\:}

\rm{\implies\:(T\:-\:2)\:=\:\dfrac{\rho}{10\:k}\times{375}\:}

\rm{\implies\:(T\:-\:2)\:=\:\dfrac{\rho}{k}\times{\dfrac{375}{10}}\:}

⚡ Put the value of ‘\rm\red{\dfrac{\rho}{k}\:=\:0.8\:}’ in the above equation .

\rm{\implies\:(T\:-\:2)\:=\:0.8\times{\dfrac{375}{10}}\:}

\rm{\implies\:(T\:-\:2)\:=\:0.8\times{37.5}\:}

\rm{\implies\:(T\:-\:2)\:=\:30\:}

\rm{\implies\:T\:=\:30\:-\:2\:}

\rm{\purple{\implies\:T\:=\:28\:hour\:}}

\rm\pink{\therefore}<font color=baby> The time taken for the thickness of ice changes from 5mm to 20mm is 28 hour .

Attachments:
Similar questions