Math, asked by jug04, 4 months ago

ICOS
cos (3π/4 + x) – cos (3π/4 - x) = – √2 sin x​

Answers

Answered by TMarvel
1

Step-by-step explanation:

 \cos( \frac{3\pi}{4} + x )  -  \cos( \frac{3\pi}{4}  -  x)  \\  =    \cos( 135+ x )  -  \cos(135  -  x)   \\  =    \cos(135) \cos(x)   -  \sin(135)  \sin(x)  - ( \cos(135)  \cos(x)  +  \sin(135)  \sin(x) ) \\  =   \cos(135) \cos(x)   -  \sin(135)  \sin(x)  -  \cos(135)  \cos(x)   -  \sin(135)  \sin(x)  \\  =   - 2 \sin(135)  \sin(x)  \\  =   - 2 \times  \frac{ \sqrt{2} }{2}  \sin(x)  \\  =  -  \sqrt{2}  \sin(x)

PROVED

Identity used:

cos(a+b) = cos(a).cos(b) - sin(a).sin(b)

cos(a-b) = cos(a).cos(b) + sin(a).sin(b)

HOPE IT HELPS :D

Similar questions