Math, asked by charlesaminth15239, 1 month ago

ID.pdf
27. There are two wires each of length 88 cm. One is bent to form a square and the
other is bent to form a circle. Find which one of them has more area ?( Take II =
22
7​

Answers

Answered by SachinGupta01
6

 \bf \:  \underline{{Given}} :

 \sf \: There  \: are \:  two \:  wires  \: each  \: of \: them \: are   \: 88  \: cm\: in \: length.

 \sf \: One \:  is  \: bent  \: to  \: form  \: a  \: square  \: and  \: the \:  other \:  is \:  bent \:  to \:  form \:  a \:  circle.

 \bf \: \underline{ To \:  find }:

 \sf \: We  \: have \:  to \:  find \:  that,   find  \: which  \: shape \:  has \:  more  \: area.

 \bf \:  \underline{\underline{Solution}} :

 \sf \: First  \: of \:  all  \: we \:  will \:  find \:  the \: area \:  of  \: the \: Square.

 \sf \: For  \: that  \: we  \: have  \: to  \: find \:  its \:  side.

 \sf \: Perimeter  \: of  \: square = 4 \times side

 \sf \implies \:  \: 88 = 4 \times side

 \sf \implies \: Side  =   \dfrac{88}{4}

 \sf \implies \: Side  =  44 \: cm \:

 \sf \: Area  \: of \:  square = S \: \times \: S

 \sf \implies \:  \: 22 \times 22

 \sf \implies \:  \: 484 \:

 \red{ \sf \: So,  \: Area  \: of \:  square \:  is \:  484  \: cm ^{2}}

 \sf \: Now,  \: we  \: will \:  find \:  the \:  area  \: of \:  the  \: circle.

 \sf \: For \:  that  \: we \:  have \:  to  \: find \:  its  \: radius.

 \sf \: Perimeter  \: of \:  circle = length \:  of  \: the \:  wire.

 \sf \: Perimeter  \: of \:  circle = 88 \: cm

 \sf \: Perimeter \:  of  \: circle = 2 \pi r

 \sf \implies \:88  \: cm=   2 \times  \dfrac{22}{7}  \:  \times r

 \sf \implies \: \dfrac{88 \: cm}{2}  =   \dfrac{22}{7}  \:  \times r

 \sf \implies \: 44  \: cm  =   \dfrac{22}{7}  \:  \times r

 \sf \implies \: 44  \: cm   \times  \dfrac{22}{7}   =  r

 \sf \implies \: 14  \: cm =  r

 \sf \: Radius \:  of  \: the  \: circle = 14  \: cm

 \sf \: Area \:  of \:  circle = \pi r ^{2}

 \sf \implies  \:  \dfrac{22}{7}  \:  \times 14^{2}

 \sf \implies  \:  \dfrac{22}{7}   \times  196

 \sf \implies  \:  616

 \red{ \sf \: So,  \: Area  \: of \:  circle \:  is \: 614  \: cm ^{2}}

 \boxed{ \sf \: 484  \: cm ^{2} < 616 \:  cm ^{2}}

 \underline{ \boxed{  \pink{\sf \: So, \:  the  \: circle \:  has \:  more  \: area \:  than  \: the \:  square. }}}

Similar questions