Math, asked by tarushisaxena1471, 10 months ago

Identify a relationship among Tn , Sn and Sn-1 where n>1

Answers

Answered by MaheswariS
0

\text{Consider the A.P}

\text{a, a+d, a+2d,...........}

\text{The n th term of the A.P is }

t_n=a+(n-1)d

\text{The sum of n terms of the A.P is }

S_n=\frac{n}{2}[2a+(n-1)d]

\text{Now}

S_n-S_{n-1}

=\displaystyle\frac{n}{2}[2a+(n-1)d]-\frac{(n-1)}{2}[2a+(n-2)d]

=\displaystyle\frac{[2an+n(n-1)d]}{2}-\frac{[2a(n-1)+(n-1)(n-2)d]}{2}

=\displaystyle\frac{[2an+n(n-1)d]-[2a(n-1)+(n-1)(n-2)d]}{2}

=\displaystyle\frac{2an+n(n-1)d-2an+2a-n(n-1)d+2(n-1)d}{2}

=\displaystyle\frac{2a+2(n-1)d}{2}

=\displaystyle\frac{2[a+(n-1)d]}{2}

=a+(n-1)d

=t_n

\therefore\boxed{\bf\;S_n-S_{n-1}=t_n}

\text{which is the required relation}

Similar questions