Math, asked by lizzycasto29, 6 months ago

Identify a3 of this sequence: 0.25, 0.5, 0.75, 1, 1.25, 1.5, …

a3 =

Answers

Answered by sarthaksharma2457
0

Answer:

Next 3 are 1.75,2.00,2.25

Answered by mysticd
0

 Given \: sequence \: 0.25, 0.5, 0.75 , 1,\\ 1.25,1.5 ,\ldots

 Here, First \:term (a = a_{1}) = 0.25

 a_{2} = 0.5

 i ) a_{2} - a_{1} \\= 0.5 - 0.25 \\= 0.25 \: --(1)

 ii ) a_{3} - a_{2} \\= 0.75 - 0.5 \\= 0.25 \: --(2)

 From\: (1) \: and \: (2)

 \blue{a_{2} - a_{1} = a_{3} - a_{2} = 0.25 }

 \therefore Given \: is \: in \: Arithmetic \: progression

 Common \: difference (d) = 0.25

 Here, a = 0.25, d = 0.25

 \red{ n^{th} \: term \: (a_{n}) } \\= a + (n-1)d \\= 0.25 + (n-1) \times 0.25\\= 0.25[ 1 + n - 1 ] \\= 0.25n

Therefore.,

 \red{ n^{th} \: term \: (a_{n}) } \green { = 0.25n }

•••♪

Similar questions