Identify the relationship among Tn, Sn and Sn-1 where n>1
Answers
Answer:
\text{a, a+d, a+2d,...........}a, a+d, a+2d,...........
\text{The n th term of the A.P is }The n th term of the A.P is
t_n=a+(n-1)dtn=a+(n−1)d
\text{The sum of n terms of the A.P is }The sum of n terms of the A.P is
S_n=\frac{n}{2}[2a+(n-1)d]Sn=2n[2a+(n−1)d]
\text{Now}Now
S_n-S_{n-1}Sn−Sn−1
=\displaystyle\frac{n}{2}[2a+(n-1)d]-\frac{(n-1)}{2}[2a+(n-2)d]=2n[2a+(n−1)d]−2(n−1)[2a+(n−2)d]
=\displaystyle\frac{[2an+n(n-1)d]-[2a(n-1)+(n-1)(n-2)d]}{2}=2[2an+n(n−1)d]−[2a(n−1)+(n−1)(n−2)d]
=\displaystyle\frac{2an+n(n-1)d-2an+2a-n(n-1)d+2(n-1)d}{2}=22an+n(n−1)d−2an+2a−n(n−1)d+2(n−1)d
=\displaystyle\frac{2a+2(n-1)d}{2}=22a+2(n−1)d
=\displaystyle\frac{2[a+(n-1)d]}{2}=22[a+(n−1)d]
=a+(n-1)d=a+(n−1)d
=t_n=tn
\therefore\boxed{\bf\;S_n-S_{n-1}=t_n}∴Sn−Sn−1=tn
\text{which is the required relation}which is the required relation