Math, asked by hassanpro, 4 months ago

Identify the solution of the given equation and also show that the other value does not satisfy the equation.
5m + 2 = 12 ; (-1, 2)​

Answers

Answered by Anonymous
1

Step-by-step explanation:

5m=60

Putting the given values in L.H.S.,

5 x 10 = 50, 5 x 5 = 25

∵ L.H.S. ≠ R.H.S. ∵ L.H.S.≠ R.H.S.

∴m=10 is not the solution. ∴m=5 is not the solution.

5 x 12 = 60, 5 x 15 = 75

∵ L.H.S. = R.H.S. ∵ L.H.S. ≠ R.H.S.

∴m=12 is a solution. ∴m=15 is not the solution.

(b) n+12=20

Putting the given values in L.H.S.,

12 + 12 = 24, 8 + 12 = 20

∵ L.H.S. ≠ R.H.S. ∵ L.H.S. = R.H.S.

∴n=12 is not the solution. ∴n=8 is a solution.

20 + 12 = 32, 0 + 12 = 12

∵ L.H.S. ≠ R.H.S. ∵ L.H.S. ≠ R.H.S.

∴n=20 is not the solution. ∴n=0 is not the solution.

(c) p–5=5

Putting the given values in L.H.S.,

0 – 5 = –5, 10 – 5 = 5

∵ L.H.S. ≠ R.H.S. ∵ L.H.S. = R.H.S.

∴p=0 is not the solution. ∴p=10 is a solution.

5 – 5 = 0, –5 – 5 = –10

∵ L.H.S. ≠ R.H.S. ∵ L.H.S. ≠ R.H.S.

∴p=5 is not the solution. ∴p=–5 is not the solution.

(d) \frac{q}{2}=7

Putting the given values in L.H.S.,

\frac{7}{2}\frac{2}{2}=1

∵ L.H.S. ≠ R.H.S. ∵ L.H.S. ≠ R.H.S.

∴q=7 is not the solution. ∴q=2 is not the solution.

\frac{10}{2}=5\frac{14}{2}=7

∵ L.H.S. ≠ R.H.S. ∵ L.H.S. = R.H.S.

∴q=10 is not the solution. ∴q=14 is a solution.

(e) r–4=0 Putting the given values in L.H.S.,

4 – 4 = 0, –4 – 4 = –8

∵ L.H.S. = R.H.S. ∵ L.H.S. ≠ R.H.S.

∴r=4 is a solution. ∴r=–4 is not the solution.

8 – 4 = 4, 0 – 4 = –4

∵ L.H.S. ≠ R.H.S. ∵ L.H.S. ≠ R.H.S.

∴r=8 is not the solution. ∴r=0 is not the solution.

(f) x+4=2

Putting the given values in L.H.S.,

–2 + 4 = 2, 0 + 4 = 4

∵ L.H.S. = R.H.S. ∵ L.H.S. ≠ R.H.S.

∴x=–2 is a solution. ∴x=0 is not the solution.

2 + 4 = 6, 4 + 4 = 8

∵ L.H.S. ≠ R.H.S. ∵ L.H.S. ≠ R.H.S.

∴x=2 is not the solution. ∴x=4 is not the solution.

Similar questions