Math, asked by s77332138, 1 month ago

Identify the terms and factors of 2xy2 – 3x3 -5x by tree method​

Answers

Answered by Ajaysunil2003
0

In general a 3×4 matrix is given by,

A=

a

11

a

21

a

31

a

12

a

22

a

32

a

13

a

23

a

33

a

14

a

24

a

34

(i)

a

ij

=

2

1

∣−3i+j∣,i=1,2,3andj=1,2,3,4

∴a

11

=

2

1

∣−3×1+1∣=

2

1

∣−3+1∣=

2

1

∣−2∣=

2

2

=1

a

21

=

2

1

∣−3×2+1∣=

2

1

∣−6+1∣=

2

1

∣−5∣=

2

5

a

31

=

2

1

∣−3×3+1∣=

2

1

∣−9+1∣=

2

1

∣−8∣=

2

8

=4

a

12

=

2

1

∣−3×1+2∣=

2

1

∣−3+2∣=

2

1

∣−1∣=

2

1

a

22

=

2

1

∣−3×2+2∣=

2

1

∣−6+2∣=

2

1

∣−4∣=

2

4

=2

a

32

=

2

1

∣−3×3+2∣=

2

1

∣−9+2∣=

2

7

a

23

=

2

1

∣−3×2+3∣=

2

1

∣−6+3∣=

2

1

∣−3∣=

2

3

a

33

=

2

1

∣−3×3+3∣=

2

1

∣−9+3∣=

2

1

∣−6∣=

2

6

=3

a

14

=

2

1

∣−3×1+4∣=

2

1

∣−3+4∣=

2

1

∣1∣=

2

1

a

24

=

2

1

∣−3×2+4∣=

2

1

∣−6+4∣=

2

1

∣−2∣=

2

2

=1

a

34

=

2

1

∣−3×3+4∣=

2

1

∣−9+4∣=

2

1

∣−5∣=

2

5

Therefore, the required matrix is

A=

1

2

5

4

2

1

2

2

3

0

2

3

3

2

1

1

2

5

(ii)

a

ij

=2i−j,i=1,2,3andj=1,2,3,4

∴a

11

=2×1−1=2−1=1

a

21

=2×2−1=4−1=3

a

31

=2×3−1=6−1=5

a

12

=2×1−2=2−2=0

a

22

=2×2−2=4−2=2

a

32

=2×3−2=6−2=4

a

13

=2×1−3=2−3=−1

a

23

=2×2−3=4−3=1

a

33

=2×3−3=6−3=3

a

14

=2×1−4=2−4=−2

a

24

=2×2−4=4−4=0

a

34

=2×3−4=6−4=2

Therefore, the required matrix is

A=

1

3

5

0

2

4

−1

1

3

−2

0

2

Similar questions