Identify the type of polynomials.
(1). f(p) =3-p²+√7p
(2). p(v)=√3v⁴-⅔v+7
(3). q(x)=√2/5x³+1
(4). p(z)=√5z+2√2
(5). r(t)=(-t+3t²-4t³) /t
Answers
Answer:
1.quadratic
2.biquadratic
3.cubic
4.linear
5.quadratic
hope it helps you.....
(1.) Therefore f(p) =3-p²+√7p is a 'Quadratic Polynomial'.
(2.) Therefore p(v)=√3v⁴-⅔v+7 is a 'Bi-Quadratic Polynomial'.
(3.) Therefore q(x)=√2/5x³+1 is a 'Cubic Polynomial'.
(4.) Therefore p(z)=√5z+2√2 is a 'Linear Polynomial'.
(5.) Therefore r(t)=(-t+3t²-4t³) /t is a 'Quadratic Polynomial'.
Given:
(1). f(p) =3-p²+√7p
(2). p(v)=√3v⁴-⅔v+7
(3). q(x)=√2/5x³+1
(4). p(z)=√5z+2√2
(5). r(t)=(-t+3t²-4t³) /t
To Find:
The type of each of the polynomials given.
Solution:
The given question can be solved as shown below.
(1.) f(p) =3-p²+√7p:
In the given polynomial, the greatest power of p is '2'. So the given polynomial is a 'Quadratic Polynomial'.
Therefore f(p) =3-p²+√7p is a 'Quadratic Polynomial'.
(2). p(v)=√3v⁴-⅔v+7:
In the given polynomial, the greatest power of v is '4'. So the given polynomial is a 'Bi-Quadratic Polynomial'.
Therefore p(v)=√3v⁴-⅔v+7 is a 'Bi-Quadratic Polynomial'.
(3). q(x)=√2/5x³+1:
In the given polynomial, the greatest power of x is '3'. So the given polynomial is a 'Cubic Polynomial'.
Therefore q(x)=√2/5x³+1 is a 'Cubic Polynomial'.
(4). p(z)=√5z+2√2:
In the given polynomial, the greatest power of z is '1'. So the given polynomial is a 'Linear Polynomial'.
Therefore p(z)=√5z+2√2 is a 'Linear Polynomial'.
(5). r(t)=(-t+3t²-4t³) /t:
⇒ r(t)=(-t+3t²-4t³) /t = -1 + 3t - 4t²
In the given polynomial, the greatest power of t is '2'. So the given polynomial is a 'Quadratic Polynomial'.
Therefore r(t)=(-t+3t²-4t³) /t is a 'Quadratic Polynomial'.
(1.) Therefore f(p) =3-p²+√7p is a 'Quadratic Polynomial'.
(2.) Therefore p(v)=√3v⁴-⅔v+7 is a 'Bi-Quadratic Polynomial'.
(3.) Therefore q(x)=√2/5x³+1 is a 'Cubic Polynomial'.
(4.) Therefore p(z)=√5z+2√2 is a 'Linear Polynomial'.
(5.) Therefore r(t)=(-t+3t²-4t³) /t is a 'Quadratic Polynomial'.
#SPJ2