Math, asked by hemawari78, 9 months ago

identities of polynomial ​

Answers

Answered by Anonymous
2

 Identity\:I

 ({x + y})^{2}  =  {x}^{2}  + 2xy2 {y}^{2}

 Identity \:II

 ({x - y})^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

 Identity \:III

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

 Identity \:IV

(x + a)(x + b) =  {x}^{2}  + (a + b)x + ab

 Identity \:V

 ({x + y + z})^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy + 2yz + 2zx

 Identity \:VI

 ({x + y})^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)

 Identity\: VII

( {x - y})^{3}  =  {x}^{3} -  {y}^{3}  - 3xy(x - y) \\  =  {x}^{3}  -  {3x}^{2}y +  {3xy}^{2}  -  {y}^{3}

 Identity\: VIII

 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx)

hope it helps u...!!

Answered by harsh253714
1

 Identity I

 ({x + y})^{2}  =  {x}^{2}  + 2xy2 {y}^{2}

 Identity II

 ({x - y})^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

 Identity III

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

 Identity IV

(x + a)(x + b) =  {x}^{2}  + (a + b)x + ab

 Identity V

 ({x + y + z})^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy + 2yz + 2zx

 Identity VI

 ({x + y})^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)

 Identity VII

( {x - y})^{3}  =  {x}^{3} -  {y}^{3}  - 3xy(x - y) \\  =  {x}^{3}  -  {3x}^{2}y +  {3xy}^{2}  -  {y}^{3}

 Identity VIII

 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx)

hope it helps u...!!

Similar questions