Math, asked by mauryayash59, 11 months ago

if √0.03×0.3×x=0.3×0.03×√y , then find x upon y

Answers

Answered by rajsingh24
113

QUESTION :-

if √0.03×0.3×x=0.3×0.03×√y , then find x upon y

SOLUTION :-

➡ √0.03×0.3×x=0.3×0.03×√y

[ Squaring both side]

➡ ( √0.03 ×0.3×x)² = (0.3 ×0.03 ×√y) ²

➡ 0.03 ×0.3 × x = 0.9 ×0.09 ×y

Now,

➡ x/y = 0.9 ×0.09/0.3 ×0.03

➡ x/y = 0.3 ×0.03

➡ x /y = 0.009

ATQ,

➡ x / y = 9 /1000

➡ x / y = 3 / 200

➡ x/y = 3 / 40

➡ x /y = 3/8

_________________

EXTRA KNOWLEDGE :-

1.the first derivative .

➡ x/y = 9/1000

➡ d/dx (x/y) = d/dx(9/1000)

➡d/dx (x) × y - x × d/dx(y) / y ² = 0

➡ 1y - x × d/dy (y) × dy/dx /y² = 0

➡ y - x × 1 × dy/dx /y² = 0

➡ y - x × dy/dx /y² = 0

➡ y - x × dy /dx =0

➡ .°. -x × dy/dx = -y

➡ .°. dy/dx = y/x

2. the second derivative.

➡x/y = 9/1000

➡ d/dx (x/y) = d/dx(9/1000)

➡d/dx (x) × y - x × d/dx(y) / y ² = 0

➡ 1y - x × d/dy (y) × dy/dx /y² = 0

➡ y - x × 1 × dy/dx /y² = 0

➡ y - x × dy/dx /y² = 0

➡ y - x × dy /dx =0

➡ .°. -x × dy/dx = -y

➡ .°. dy/dx = y/x

➡ d²y / d²x = d/dx (y) × x - y × d/dx (x)/x²

➡ d²y / d²x = d/dx (y) × dy/dx × x-y × 1/x²

➡ d²y / d²x = 1 × dy /dx × x - y/x²

➡ d²y / d²x = y/x × x -y

➡ .°. d²y/d²x = 0

Similar questions