if √0.03×0.3×x=0.3×0.03×√y , then find x upon y
Answers
QUESTION :-
if √0.03×0.3×x=0.3×0.03×√y , then find x upon y
SOLUTION :-
➡ √0.03×0.3×x=0.3×0.03×√y
[ Squaring both side]
➡ ( √0.03 ×0.3×x)² = (0.3 ×0.03 ×√y) ²
➡ 0.03 ×0.3 × x = 0.9 ×0.09 ×y
Now,
➡ x/y = 0.9 ×0.09/0.3 ×0.03
➡ x/y = 0.3 ×0.03
➡ x /y = 0.009
ATQ,
➡ x / y = 9 /1000
➡ x / y = 3 / 200
➡ x/y = 3 / 40
➡ x /y = 3/8
_________________
➡ EXTRA KNOWLEDGE :-
1.the first derivative .
➡ x/y = 9/1000
➡ d/dx (x/y) = d/dx(9/1000)
➡d/dx (x) × y - x × d/dx(y) / y ² = 0
➡ 1y - x × d/dy (y) × dy/dx /y² = 0
➡ y - x × 1 × dy/dx /y² = 0
➡ y - x × dy/dx /y² = 0
➡ y - x × dy /dx =0
➡ .°. -x × dy/dx = -y
➡ .°. dy/dx = y/x
2. the second derivative.
➡x/y = 9/1000
➡ d/dx (x/y) = d/dx(9/1000)
➡d/dx (x) × y - x × d/dx(y) / y ² = 0
➡ 1y - x × d/dy (y) × dy/dx /y² = 0
➡ y - x × 1 × dy/dx /y² = 0
➡ y - x × dy/dx /y² = 0
➡ y - x × dy /dx =0
➡ .°. -x × dy/dx = -y
➡ .°. dy/dx = y/x
➡ d²y / d²x = d/dx (y) × x - y × d/dx (x)/x²
➡ d²y / d²x = d/dx (y) × dy/dx × x-y × 1/x²
➡ d²y / d²x = 1 × dy /dx × x - y/x²
➡ d²y / d²x = y/x × x -y