Math, asked by Anonymous, 7 days ago

If (0.2)x = 2 and log 2 = 0.3010, then the value of x to the nearest tenth is: (a) -10.0, (b) -0.5, (c) -0.4, (d) -0.2, (e) 10.0​

Answers

Answered by mathdude500
12

Appropriate Question :-

\sf \: If  \:  {(0.2)}^{x}  = 2 \: and \:  log 2 = 0.3010,

then the value of x to the nearest tenth is

(a) -10.0

(b) -0.5

(c) -0.4

(d) -0.2

(e) 10.0

\large\underline{\sf{Solution-}}

Given that,

\rm \: log2 = 0.3010 \\

And

\rm \:  {(0.2)}^{x} = 2 \\

can be rewritten as

\rm \:  {\bigg(\dfrac{2}{10} \bigg) }^{x}  = 2 \\

On taking log on both sides, we get

\rm \: log {\bigg(\dfrac{2}{10} \bigg) }^{x}  = log2 \\

We know,

\boxed{\sf{  \:log {x}^{y} = ylogx \: }} \\

So, using this identity, we get

\rm \: x \: log\bigg(\dfrac{2}{10} \bigg)  = log2 \\

We know,

\boxed{\sf{  \:log \bigg(\frac{x}{y}\bigg)  = logx - logy \: }} \\

So, using this, we get

\rm \: x(log2 - log10) = log2 \\

As it is given that, log 2 = 0.3010 and we know that log10 = 1

So, on substituting these values, we get

\rm \: x(0.3010 - 1) = 0.3010 \\

\rm \:  - 0.699x = 0.3010 \\

\rm \: x =  - \dfrac{0.3010}{0.699}  \\

\bf\implies \:x \:  = \:  -  \:  0.4 \: approx \\

[ as we have to find the value of x to nearest tenth ]

Hence,

Option (c) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:logxy = logx + logy \: }} \\

\boxed{\sf{  \: log_{a}(b) =  \frac{logb}{loga} \: }} \\

\boxed{\sf{  \: log_{a}(a) =  1 \: }} \\

\boxed{\sf{  \: log_{a}( {a}^{x} ) =  x \: }} \\

\boxed{\sf{  \: log_{ {a}^{y} }( {a}^{x} ) =   \frac{x}{y}  \: }} \\

\boxed{\sf{  \: log_{ {b}^{y} }( {a}^{x} ) =   \frac{x}{y} log_{b}(a)\: }} \\

\boxed{\sf{  \: {a}^{ log_{a}(x)}  = x \: }} \\

\boxed{\sf{  \: {a}^{ y \: log_{a}(x)}  =  {x}^{y}  \: }} \\

Answered by Missincridedible
2

\large\mathbb \red{\fcolorbox{red}{lime}{ answer \ }} \\

Attachments:
Similar questions