Math, asked by anuradharani133, 1 year ago

If (0.4z-3)/(1.5z+9)=-7/5 then what us the value of z.

Answers

Answered by Anonymous
9

Answer :-

z = - 3.84

Solution :-

 \sf  \dfrac{0.4z - 3}{1.5z + 9} =  -  \dfrac{7}{5}

By Cross multiplication

 \sf (0.4z - 3)5= - 7(1.5z + 9)

It can be written as

 \sf  \left( \dfrac{4z}{10} - 3 \right)5 =  - 7\left( \dfrac{15z}{10} + 9\right)

 \sf  \left( \dfrac{4z}{10}\right)5 -3(5) =  - 7\left( \dfrac{15z}{10}\right) - 7(9)

 \sf \dfrac{20z}{10} - 15 =  - \dfrac{105z}{10} - 63

 \sf \dfrac{20z}{10} + \dfrac{105z}{10}  = - 63 + 15

 \sf \dfrac{20z + 105z}{10}  = - 48

 \sf \dfrac{125z}{10}  = - 48

 \sf 125z= - 48(10)

 \sf 125z= - 480

 \sf z =   - \dfrac{480}{125}

 \sf z =   - \dfrac{480 \div 5}{125 \div 5}

 \sf z =   - \dfrac{96}{25}

 \sf z =   - 3.84

Verification :-

 \sf  \dfrac{0.4z - 3}{1.5z + 9} =  -  \dfrac{7}{5}

 \sf \implies \dfrac{0.4( - 3.84) - 3}{1.5 (-3.84) + 9} =  -  \dfrac{7}{5}

 \sf \implies \dfrac{ - 1.536 - 3}{ - 5.76 + 9} =  -  \dfrac{7}{5}

 \sf \implies \dfrac{ - 4.536 }{3.24} =  -  \dfrac{7}{5}

 \sf \implies \dfrac{ -  \frac{4536}{100} }{ \frac{3240}{100} } =  -  \dfrac{7}{5}

 \sf \implies  -  \dfrac{4536}{1000} \times  \dfrac{1000}{3240} =  -  \dfrac{7}{5}

 \sf \implies  -  \dfrac{4536}{1} \times  \dfrac{1}{3240} =  -  \dfrac{7}{5}

 \sf \implies  -  \dfrac{4536}{3240} = - \dfrac{7}{5}

 \sf \implies  -  \dfrac{4536 \div 648}{3240 \div 648} = - \dfrac{7}{5}

 \sf \implies  -  \dfrac{7}{5}=  -  \dfrac{7}{5}

Similar questions