Math, asked by saisreemeghana4652, 8 months ago

If √_(0.512)/x =3√1000000, then find the value of x

Answers

Answered by seb369963
0

Answer:

= 4/5

Step-by-step explanation:

0.512/x = 512/1000x

cube root of 0.512/x = [(8/10)^3]^1/3 × (1/x)^1/3

8/10 × (1/x)^1/3 = [(100)^3]^1/3

8/10 × (1/x)^1/3 = 100

(8/x)^1/3 = 1000

(8/x)^1/3 = 10^3

8/x = 10

x = 8/10 = 4/5

Answered by Salmonpanna2022
4

Step-by-step explanation:

\mathsf{Given : \dfrac{\sqrt[3]{0.512}}{x} = \sqrt[3]{1000000}}

\mathsf{\implies x = \dfrac{\sqrt[3]{0.512}}{\sqrt[3]{1000000}}}

\textsf{We know that :}

\mathsf{\bigstar\;\;0.512 = 0.8 \times 0.8 \times 0.8 = (0.8)^3}

\mathsf{\bigstar\;\;1000000 = 100 \times 100 \times 100 = (100)^3}

\mathsf{\implies x = \dfrac{\sqrt[3]{(0.8)^3}}{\sqrt[3]{(100)^3}}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{\sqrt[n]{a} = a^{\frac{1}{n}}}}}

\mathsf{\implies x = \dfrac{[(0.8)^3]^{\frac{1}{3}}}{[(100)^3]^{\frac{1}{3}}}}

\mathsf{\implies x = \dfrac{[0.8]^{\frac{3}{3}}}{[100]^{\frac{3}{3}}}}

\mathsf{\implies x = \dfrac{0.8}{100}}

\mathsf{\implies x = 0.008}

Similar questions