If 0>a>b>c, and a^2 + bc = 20, b^2 + ca = 20 and c^2 + ab = 30, what is the value of a, b and c?
Answers
Answered by
28
Heya !!
Here is your solution :
Given,
⇒ 0 > a > b > c
And,
⇒ a² + bc = 20 --------- ( 1 )
⇒ b² + ca = 20 -------- ( 2 )
⇒ c² + ab = 30 --------- ( 3 )
Adding ( 1 ) , ( 2 ) and ( 3 ),
⇒ a² + b² + c² + bc + ca + ab = 20 + 20 + 30
•°• a² + b² + c² + ab + bc + ca = 70 ------- ( 4 )
From ( 1 ) and ( 2 ) we get,
⇒ a² + bc = b² + ca
⇒ a² - b² = ca - bc
⇒ ( a + b ) ( a - b ) = c ( a - b )
•°• ( a + b ) = c ---------- ( 5 )
Adding ( 1 ) and ( 2 ),
⇒ a² + bc + b² + ca = 20 + 20
⇒ a² + b² + bc + ca = 40
⇒ a² + b² + c ( a + b ) = 40
Substitute the value of ( 6 ),
⇒ a² + b² + c × c = 40
⇒ a² + b² + c² = 40 -------- ( 6 )
Substitute the value of ( 6 ) in ( 4 ),
⇒ a² + b² + c² + ab + bc + ca = 70
⇒ 40 + ab + bc + ca = 70
⇒ ab + bc + ca = 70 - 40
⇒ ab + bc + ca = 30
Multiplying both sides by 2,
⇒ 2( ab + bc + ca ) = 2 × 30
•°• 2ab + 2bc + 2ca = 60 -------- ( 7 )
Adding ( 6 ) and ( 7 ),
⇒ a² + b² + c² + 2ab + 2bc + 2ca = 40 + 60
⇒ ( a + b + c )² = 100
⇒( a + b + c ) = √100
•°• ( a + b + c ) = -10 -------( 8 )
[ Neglecting +ve value ]
Subtracting ( 8 ) from ( 5 ),
⇒( a + b ) - ( a + b + c ) = c - ( -10 )
⇒ a + b - a - b - c = c + 10
⇒ -c = c + 10
⇒ -c - c = 10
⇒ -2c = 10
⇒ c = 10 ÷ ( -2 )
•°• c = -5
Substitute the value of 'c' in ( 6 ),
⇒ a² + b² + c² = 40
⇒ a² + b² + ( -5 )² = 40
⇒ a² + b² + 25 = 40
⇒ a² + b² = 40 - 25
•°• a² + b² = 15 ---------- ( 9 )
Substitute the value of 'c' in ( 5 ),
⇒ ( a + b ) = c
⇒ a + b = ( -5 ) --------( 10 )
Squaring both sides,
⇒ ( a + b )² = ( -5 )²
•°• a² + b² + 2ab = 25 --------- ( 11 )
Substitute the value of ( 9 ) in ( 11 ),
⇒ a² + b² + 2ab = 25
⇒ 15 + 2ab = 25
⇒ 2ab = 25 - 15
•°• 2ab = 10 --------- ( 12 )
Subtact ( 12 ) from ( 9 ),
⇒ a² + b² - 2ab = 15 - 10
⇒( a - b )² = 5
⇒ ( a - b ) = √5 --------- ( 12 )
[ Neglecting ( -ve ) value ]
Adding ( 12 ) and ( 10 ),
⇒ a + b + a - b = -5 + √5
⇒ 2a = √5 - 5
Subtracting ( 12 ) from ( 10 ),
⇒ ( a + b ) - ( a - b ) = -5 - √5
⇒ a + b - a + b = -5 - √5
⇒ 2b = -5 - √5
Hence,
Hope it helps !!
Here is your solution :
Given,
⇒ 0 > a > b > c
And,
⇒ a² + bc = 20 --------- ( 1 )
⇒ b² + ca = 20 -------- ( 2 )
⇒ c² + ab = 30 --------- ( 3 )
Adding ( 1 ) , ( 2 ) and ( 3 ),
⇒ a² + b² + c² + bc + ca + ab = 20 + 20 + 30
•°• a² + b² + c² + ab + bc + ca = 70 ------- ( 4 )
From ( 1 ) and ( 2 ) we get,
⇒ a² + bc = b² + ca
⇒ a² - b² = ca - bc
⇒ ( a + b ) ( a - b ) = c ( a - b )
•°• ( a + b ) = c ---------- ( 5 )
Adding ( 1 ) and ( 2 ),
⇒ a² + bc + b² + ca = 20 + 20
⇒ a² + b² + bc + ca = 40
⇒ a² + b² + c ( a + b ) = 40
Substitute the value of ( 6 ),
⇒ a² + b² + c × c = 40
⇒ a² + b² + c² = 40 -------- ( 6 )
Substitute the value of ( 6 ) in ( 4 ),
⇒ a² + b² + c² + ab + bc + ca = 70
⇒ 40 + ab + bc + ca = 70
⇒ ab + bc + ca = 70 - 40
⇒ ab + bc + ca = 30
Multiplying both sides by 2,
⇒ 2( ab + bc + ca ) = 2 × 30
•°• 2ab + 2bc + 2ca = 60 -------- ( 7 )
Adding ( 6 ) and ( 7 ),
⇒ a² + b² + c² + 2ab + 2bc + 2ca = 40 + 60
⇒ ( a + b + c )² = 100
⇒( a + b + c ) = √100
•°• ( a + b + c ) = -10 -------( 8 )
[ Neglecting +ve value ]
Subtracting ( 8 ) from ( 5 ),
⇒( a + b ) - ( a + b + c ) = c - ( -10 )
⇒ a + b - a - b - c = c + 10
⇒ -c = c + 10
⇒ -c - c = 10
⇒ -2c = 10
⇒ c = 10 ÷ ( -2 )
•°• c = -5
Substitute the value of 'c' in ( 6 ),
⇒ a² + b² + c² = 40
⇒ a² + b² + ( -5 )² = 40
⇒ a² + b² + 25 = 40
⇒ a² + b² = 40 - 25
•°• a² + b² = 15 ---------- ( 9 )
Substitute the value of 'c' in ( 5 ),
⇒ ( a + b ) = c
⇒ a + b = ( -5 ) --------( 10 )
Squaring both sides,
⇒ ( a + b )² = ( -5 )²
•°• a² + b² + 2ab = 25 --------- ( 11 )
Substitute the value of ( 9 ) in ( 11 ),
⇒ a² + b² + 2ab = 25
⇒ 15 + 2ab = 25
⇒ 2ab = 25 - 15
•°• 2ab = 10 --------- ( 12 )
Subtact ( 12 ) from ( 9 ),
⇒ a² + b² - 2ab = 15 - 10
⇒( a - b )² = 5
⇒ ( a - b ) = √5 --------- ( 12 )
[ Neglecting ( -ve ) value ]
Adding ( 12 ) and ( 10 ),
⇒ a + b + a - b = -5 + √5
⇒ 2a = √5 - 5
Subtracting ( 12 ) from ( 10 ),
⇒ ( a + b ) - ( a - b ) = -5 - √5
⇒ a + b - a + b = -5 - √5
⇒ 2b = -5 - √5
Hence,
Hope it helps !!
Anonymous:
great answer sissy
Answered by
19
Thanks for a fantabalous question.
Solution contains all steps.
On finding any mistake, comment immediately.
Attachments:
Similar questions