If 0 is an interior point of ΔABC, then prove that
AB+BC+CA < 2 (OA+OB+OC)
Answers
ANSWER:-
In triangle ABC, O is a point interior of ∆ABC. As we know that “The sum of any two sides of a triangle is greater than the third side”. OA + OB > AB …(i) OA + OC > AC …(ii) and OB + OC > BC …(iii) Now, adding (i), (ii) and (iii), we get 2(OA + OB + OC) > AB + BC + CA or AB + BC + CA < 2(OA + OB + OC) Hence proved.Read more on Sarthaks.com - https://www.sarthaks.com/781228/in-figure-o-is-an-interior-point-of-abc-show-that-ab-bc-ca-2-oa-ob-oc
Answer:
InΔPBO
BP+PO>OB
AddingOCanbothsides
weget,
BP+PO+OC>OB+OC
BP+PC>OB+OC
BP+PC>OB+OC→(i)[PO+OC=PC]
InΔAPC
AP+AC>PC
AddingBPonbothsides,weget
AP+AC+BP>PC+BP→(ii)[AP+PB=AB]
from(i)&(ii)
AB+AC>BP+PC>OB+OC
AB+AC>OB+OC→(iii)
similarly
BC+AC>OB+OA→(iv)
AB+BC>OA+OC→(v)
addingequation(3)(4)(5)weget
2(AB+BC+CA)>2(OA+OB+OC)
AB+BC+CA>OA+OB+OC