Math, asked by vraj1135, 9 months ago

If 0 < A,B <pi/3,tan A =a/a+1 and tan B=1/2a+1, then prove that A+B=pi/4​

Answers

Answered by sshailshetty
0

Tan A = a / (a + 1)               tan B = 1 / (2 a + 1)

Cot A = 1 + 1/a               Cot B = 2a +1

  Tan (A+B)  =  (Tan A + Tan B) / [1 - Tan A tan B]

                  =   (Cot A + Cot B) / [Cot A Cot B - 1] 

                  =   (1 + 1/a + 2a +1) / [1 + 2a + 2 + 1/a - 1]

                  =   [2 a² + 2 a + 1] / [2a² + 2a + 1]

                  = 1

 =>  A + B  = π/4  or  5 π/4      :    nπ + π/4

Similar questions