If 0 < A,B <pi/3,tan A =a/a+1 and tan B=1/2a+1, then prove that A+B=pi/4
Answers
Answered by
0
Tan A = a / (a + 1) tan B = 1 / (2 a + 1)
Cot A = 1 + 1/a Cot B = 2a +1
Tan (A+B) = (Tan A + Tan B) / [1 - Tan A tan B]
= (Cot A + Cot B) / [Cot A Cot B - 1]
= (1 + 1/a + 2a +1) / [1 + 2a + 2 + 1/a - 1]
= [2 a² + 2 a + 1] / [2a² + 2a + 1]
= 1
=> A + B = π/4 or 5 π/4 : nπ + π/4
Similar questions