Math, asked by sunnyraj1321, 1 year ago

If 0<A<B<π/4 and sin (A+B)=24/25 and cos (A-B)=4/5, then find the value of tan 2A

Answers

Answered by SerenaBochenek
221

Answer:

The value of tan(2A) is \frac{3}{4}[/tex]

Step-by-step explanation:

Given sin(A+B)=\frac{24}{25}

cos(A-B)=\frac{4}{5}

we have to find tan2A

If sin(A+B)=\frac{24}{25} then perpendicular is 24 and hypotenuse is 25 then

By Pythagoras Theorem third side can be calculated as

25^{2}=24^{2}+Base^2

⇒ Base is 7

Hence, tan(A+B)=\frac{24}{7}

Similarly,

if cos(A-B)=\frac{4}{5} then base is 4 and hypotenuse is 5 then

By Pythagoras Theorem third side can be calculated as

5^{2}=4^{2}+Perpendicular^2

⇒ Perpendicular is 3

Hence, tan(A-B)=\frac{3}{4}

∵ B>A, then A-B is negative.hence, taken negative

tan(A-B)=\frac{-3}{4}

tan(2A)=tan((A+B)+(A-B))= \frac{tan(A+B)+tan(A-B)}{1-tan(A+B)\times tan(A-B)}

tan(2A)=\frac{\frac{24}{7}+(\frac{-3}{4})}{1-\frac{24}{7}\times (\frac{-3}{4})}

                      =\frac{\frac{75}{28}}{\frac{100}{28}}=\frac{3}{4}



Similar questions