Math, asked by pichikavarun0705, 9 months ago

If 0 <a< x, then minimum value of
 | log_a {x +  log_x{a} } |
is ?​

Answers

Answered by Anonymous
3

Solution:-

 \implies \rm \:   | log_{a}x +  log_{x}a |

Condition

 \rm \:  \implies0 &lt; a &lt; x

Now use the property of AM and GM

 \rm \implies \dfrac{a + b}{2}  \geqslant  \sqrt{a \times b}

We can write as

 \rm \:  \implies \dfrac{  log_{a}x  +  log_{x}a}{2}  \geqslant  \sqrt{ log_{a}x \times  log_{x}a  }

Use the logarithmic properties

 \implies \boxed{ \rm log_{m}n =  \dfrac{ log \: n }{ log \: m } }

Now

 \rm\implies \:   log_{a}x +  log_{x}a  \geqslant 2( \sqrt{ log_{a}x \times  log_{x}a}

using this property

 \rm\implies \:   log_{a}x +  log_{x}a  \geqslant 2( \sqrt{ \dfrac{ log \: x }{ log \: a } \times  \dfrac{ log \: a }{ log \: x }  }

we get

 \rm\implies \:   log_{a}x +  log_{x}a  \geqslant 2( \sqrt{  \cancel\dfrac{ log \: x }{ log \: a } \times  \cancel \dfrac{ log \: a }{ log \: x }  }

\rm\implies \:   log_{a}x +  log_{x}a  \geqslant 2( 1)

\rm\implies \:   log_{a}x +  log_{x}a  \geqslant 2

So the minimum value of

 \rm\implies \:   log_{a}x +  log_{x}a \:  \: is \:  \: 2

Answered by VarunGuleria
3

Answer:

First follow me.

.....

.

.

.

Similar questions