Math, asked by danielle2853, 5 months ago

If 0 < θ < π/8
 show \: that \: \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2cos4 \theta} }}  = 2cos \theta/2

Answers

Answered by MaIeficent
7

Step-by-step explanation:

Given:-

  • 0 < θ < π/8

To Prove:-

  •  \rm\sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2cos4 \theta} } }  = 2cos \theta/2

Formula Used:-

  • 1 + cosθ = 2 cos² θ/2

Proof:-

 \rm LHS = \sqrt{2 +  \sqrt{2 +  \sqrt{2 + 2cos4 \theta} } }

 \rm= \sqrt{2 +  \sqrt{2 +  \sqrt{2 (1+ cos4 \theta)} } }

 \rm= \sqrt{2 +  \sqrt{2 +  \sqrt{2 (2 cos^{2} 2\theta)} } }

 \rm= \sqrt{2 +  \sqrt{2 +  \sqrt{4 cos^{2} 2\theta} } }

 \rm= \sqrt{2 +  \sqrt{2 +  2cos2 \theta} }

 \rm= \sqrt{2 +  \sqrt{2 (1 + cos2 \theta)} }

 \rm= \sqrt{2 +  \sqrt{2 (2cos ^{2} \theta)} }

 \rm= \sqrt{2 +  \sqrt{4cos ^{2} \theta} }

 \rm= \sqrt{2 +  2cos \theta }

 \rm= \sqrt{2 (1 + cos \theta) }

 \rm= \sqrt{2 (2cos^{2} ( \theta/2) }

 \rm= \sqrt{4cos^{2} ( \theta/2) }

 \rm= 2cos( \theta/2)

LHS = RHS

Hence Proved

Similar questions