Math, asked by SnigdhadeepMajumdar, 2 months ago

If 0 < theta <π/4 , then the simplest form of √(1 - 2 sintheta costheta ) is​

Answers

Answered by mathdude500
109

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \sqrt{1 - 2 \: sin \theta \:cos\theta \: }

 \rm \:  =  \:  \: \sqrt{ {sin}^{2}\theta \: +  {cos}^{2}\theta \:   - 2 \: sin \theta \:cos\theta \: }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {sin}^{2}x +  {cos}^{2}x = 1\bigg \}}

 \rm \:  =  \:  \:  \sqrt{ {(cos\theta \: - sin\theta \:)}^{2} }

 \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {x}^{2} +  {y}^{2} - 2xy =  {(x - y)}^{2}\bigg \}}

 \rm \:  =  \:  \:  |cos\theta \: - sin\theta \:|

 \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  \sqrt{ {x}^{2}}  =  |x|  \bigg \}}

 \rm \:  =  \:  \: cos\theta \: - sin\theta \:

\red{\bigg \{ \because \: as \: 0 &lt; \theta \: &lt; \dfrac{\pi}{4}, \: cos\theta \: &gt; sin\theta \:\bigg \}}

Hence,

\rm :\longmapsto\: \sqrt{1 - 2sin\theta \:cos\theta \:} = cos\theta \: - sin\theta \: \: if \: 0 &lt; \theta \: &lt; \dfrac{\pi}{4}

Additional Information :-

Trigonometry Formulas

sin(−θ) = −sin θ

cos(−θ) = cos θ

tan(−θ) = −tan θ

cosec(−θ) = −cosecθ

sec(−θ) = sec θ

cot(−θ) = −cot θ

Product to Sum Formulas

sin x sin y = 1/2 [cos(x–y) − cos(x+y)]

cos x cos y = 1/2[cos(x–y) + cos(x+y)]

sin x cos y = 1/2[sin(x+y) + sin(x−y)]

cos x sin y = 1/2[sin(x+y) – sin(x−y)]

Sum to Product Formulas

sin x + sin y = 2 sin [(x+y)/2] cos [(x-y)/2]

sin x – sin y = 2 cos [(x+y)/2] sin [(x-y)/2]

cos x + cos y = 2 cos [(x+y)/2] cos [(x-y)/2]

cos x – cos y = -2 sin [(x+y)/2] sin [(x-y)/2]

Sum or Difference of angles

cos (A + B) = cos A cos B – sin A sin B

cos (A – B) = cos A cos B + sin A sin B

sin (A+B) = sin A cos B + cos A sin B

sin (A -B) = sin A cos B – cos A sin B

tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)]

tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)]

cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)]

cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)]

cos(A+B) cos(A–B)=cos^2A–sin^2B=cos^2B–sin^2A

sin(A+B) sin(A–B) = sin^2A–sin^2B=cos^2B–cos^2A

Multiple and Submultiple angles

sin2A = 2sinA cosA = [2tan A /(1+tan²A)]

cos2A = cos²A–sin²A = 1–2sin²A = 2cos²A–1= [(1-tan²A)/(1+tan²A)]

tan 2A = (2 tan A)/(1-tan²A)

Answered by samritha07
20

Answer:

sin theta - cos theta

I THINK THIS MAY HELP YOU

Attachments:
Similar questions