Math, asked by paussaha, 9 months ago

if 0<=x<π/2 then what is the value of x in sin x-sin 2x + sin 3x=0?​

Answers

Answered by senboni123456
0

Answer:

x=0 or x=π/3

Step-by-step explanation:

Given, 0≤x<π/2,

so,

 \sin(x)  -  \sin(2x)  +  \sin(3x)  = 0

 =  &gt;  \sin(x)  +  \sin(3x) -  \sin(2x) = 0

We know that, sin(c)+sin(d)=2sin((c+d)/2)cos((c-d)/2)

so,

 =  &gt; 2 \sin( \frac{x + 3x}{2} )  \cos( \frac{x - 3x}{2} ) -  \sin(2x)   = 0

 =  &gt; 2 \sin(2x) \cos( - x) -  \sin(2x) = 0

we know, cos(-a)=cos(a),

so,

 =  &gt; 2 \sin(2x) \cos(x)  -  \sin(2x) = 0

 =  &gt;  \sin(2x) (2 \cos(x) - 1) = 0

either \:  \:  \sin(2x) = 0 \:  \: or \:  \: (2 \cos(x)  - 1) = 0

either \:  \: 2x = 0 \:  \: or \:  \:  \cos(x)  =  \frac{1}{2}

either \:  \: x = 0 \:  \: or \:  \: x =  \frac{\pi}{3}

as, we know, sin(0)=0 and cos(π/3)=1/2

Similar questions