If 0°<θ<90°
2sin²θ + 3cosθ = 3, then the value of θ is ???
GUD wali morning ☺❤❣️✌
Answers
Answered by
2
Answer:
Required measure of angle A is 90°.
Step-by-step explanation:
= > cos^2 A - 3 cosA + 2 = 2 sin^2 A
From the properties of trigonometry :
sin^2 theta + cos^2 theta= 1
sin^2 theta= 1 - cos^2 theta
theta will be cancelled
= > cos^2 A - 3 cosA + 2 = 2( 1 - cos^2 A ) { 2sin^2 A = 2( 1 - cos^2 A ) }
= > cos^2 A - 3 cosA + 2 = 2 - 2 cos^2 A
= > 2 cos^2 A + cos^2 A - 3 cosA + 2 - 2 = 0
= > 3 cos^2 A - 3 cosA = 0
= > 3 cosA ( cosA - 1 ) = 0
Case 1 : If cosA is 0 .
= > 3 cosA = 0
= > cosA = 0
= > cosA = cos90°
= > A = 90° or π / 2
Case 2 : If cosA - 1 is zero.
= > cosA - 1 = 0
= > cosA = 1
= > cosA = cos0°
But here, theta or A is greater than 0°, cosA ≠ cos0°
Therefore the required measure of angle A is 90°.
This is your answer
Hope this helps you✌️✌️
please like it♥️♥️
And Mark as brainliest☺️
Good morning Aryan..♥️
Have a nice day ...☺️♥️
Similar questions
Math,
1 month ago
Math,
1 month ago
Hindi,
1 month ago
Social Sciences,
3 months ago
Accountancy,
10 months ago