Math, asked by Anonymous, 10 months ago

If 0° < α < 90° , then find the value of the given identity :
 \rm \dfrac{ \tan( \alpha ) -  \sec( \alpha ) - 1  }{ \tan( \alpha ) +  \sec( \alpha )  + 1 }

- SSC CGL Tier II. Need Urgently​

Answers

Answered by Anonymous
114

AnswEr :

\Longrightarrow\dfrac{ \tan( \alpha ) - \sec( \alpha ) - 1 }{ \tan( \alpha ) + \sec( \alpha ) + 1 }

⠀⠀⠀⠀⋆ (sec² α - tan² α = 1)

\Longrightarrow\dfrac{ \tan( \alpha ) - \sec( \alpha ) - ( { \sec}^{2}( \alpha ) -  \tan^{2} ( \alpha ))   }{ \tan( \alpha ) + \sec( \alpha ) + 1 }

\Longrightarrow\dfrac{ \tan( \alpha ) - \sec( \alpha ) - (   \sec( \alpha ) + \tan( \alpha ))( \sec( \alpha ) -  \tan( \alpha ) )  }{ \tan( \alpha ) + \sec( \alpha ) + 1 }

⠀⠀⠀⠀⋆ Taking Negative Common

\Longrightarrow\dfrac{  - (\sec( \alpha ) -  \tan( \alpha ))  - (   \sec( \alpha ) + \tan( \alpha ))( \sec( \alpha ) -  \tan( \alpha ) )  }{ \tan( \alpha ) + \sec( \alpha ) + 1 }

⠀⠀⠀⠀⋆ Taking (sec α - tan α) Common

\Longrightarrow\dfrac{(1  - (   \sec( \alpha ) + \tan( \alpha ))(\sec( \alpha) -  \tan( \alpha)) }{ \tan( \alpha ) + \sec( \alpha ) + 1 }

\Longrightarrow\dfrac{(1  -  \sec( \alpha )  -  \tan( \alpha ))(\sec( \alpha) -  \tan( \alpha ))}{ \tan( \alpha ) + \sec( \alpha ) + 1 }

⠀⠀⠀⠀⋆ Taking Negative Common

\Longrightarrow\dfrac{ -  \cancel{(1   + \sec( \alpha )   +   \tan( \alpha ))} (\sec( \alpha) -  \tan( \alpha ))} {\cancel{ \tan( \alpha ) + \sec( \alpha ) + 1 }}

\Longrightarrow - ( \sec( \alpha )  -  \tan( \alpha ) )

\Longrightarrow  - \sec( \alpha )   +  \tan( \alpha )

\Longrightarrow \tan( \alpha )  -  \sec( \alpha )

⠀⠀⠀⠀⋆ tan α = sin α / cos α

⠀⠀⠀⠀⋆ sec α = 1 / cos α

\Longrightarrow \dfrac{ \sin( \alpha ) }{ \cos( \alpha ) }  +  \dfrac{1}{ \cos( \alpha ) }

\Longrightarrow \large \dfrac{ \sin( \alpha ) - 1 }{ \cos( \alpha ) }

 \therefore \boxed{\dfrac{ \tan( \alpha ) - \sec( \alpha ) - 1 }{ \tan( \alpha ) + \sec( \alpha ) + 1 } =  \dfrac{ \sin( \alpha )  - 1}{ \cos( \alpha ) } }

Answered by RvChaudharY50
67

\underline{{\colorbox{yellow}{Question}}}

 \rm \dfrac{ \tan( \alpha ) - \sec( \alpha ) - 1 }{ \tan( \alpha ) + \sec( \alpha ) + 1 }

\LARGE\underline{\underline{\sf \red{S}\blue{o}\green{l}\orange{u}\pink{t}\purple{i}\orange{o}\red{n}:}}

Formula To be used ----

  • Sec²A - tan²A = 1
  • Sec A = 1/cos A
  • Tan A = Sin A/Cos A

\rm \dfrac{ \tan( \alpha ) - \sec( \alpha ) - 1 }{ \tan( \alpha ) + \sec( \alpha ) + 1 } \\  \\ putting \: value \: of \: 1 \: in \: numerator \\  \\ \rm \dfrac{ \tan( \alpha ) - \sec( \alpha ) - ( \sec^{2} \alpha - \tan^{2} \alpha)  }{ \tan( \alpha ) + \sec( \alpha ) + 1 } \\  \\ using \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \: now \\  \\ \rm \dfrac{( \tan( \alpha ) - \sec( \alpha )) - ((\sec( \alpha ) - \tan( \alpha )(\tan( \alpha )  +  \sec( \alpha ))}{ \tan( \alpha ) + \sec( \alpha ) + 1 } \\  \\ taking \: ( - ve) \: from \: (\sec( \alpha ) - \tan( \alpha) \\ of \: numerator \: now \: and \: than \:  \\   taking \: ( \tan( \alpha ) - \sec( \alpha )) \: also \: common \\ we \: get \implies \\  \\  \frac{ ( \tan( \alpha ) - \sec( \alpha )) \cancel{(1  + (( \tan( \alpha )  +  \sec( \alpha )))}}{\cancel{(1  + (( \tan( \alpha )  +  \sec( \alpha )))}}  \\  \\  \\  \implies \: ( \tan( \alpha ) - \sec( \alpha )) \\  \\ \implies \:  \frac{sin( \alpha)}{cos( \alpha)}  -  \frac{1}{cos( \alpha)}  \\  \\ \implies \:  \frac{sin( \alpha) - 1}{cos( \alpha)}  \:

\color {red}\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

\underline\textsf{Double Angle Identities}

→ sin²θ = 2sinθcosθ

= \frac{2 \tanθ}{1+ \tan^{2}θ}

→ cos2θ = cos²θ- sin²θ

= 1 - 2sin²θ

= 2cos²θ- 1

= \frac{1- \tan^{2}θ}{1+ \tan^{2}θ}

→Tan2θ = \frac{2 \tanθ}{1- \tan^{2}θ}

\mathcal{BE\:\:BRAINLY}

Similar questions