If 1(0!)+3.(1!)+7(2!)+13(3!)+21(4!)+⋯ n terms = (4000)(4000!) Then what is the value of n.
Answers
Answered by
0
Answer:
n = 4000
Step-by-step explanation:
1(0!)+3(1!)+7(2!)+13(3!)+21(4!)+. . . n terms, then
tn = (n²-n+1)(n-1)!
= [n²-(n-1)](n-1)! = n²(n-1)! - (n-1)(n-1)!
= n.n! - (n-1).(n-1)!
Now,
1(0!) = 1.1! - 0.0!
3(1!) = 2.2! - 1.1!
7(2!) = 3.3! - 2.2!
13(3!) = 4.4! - 3.3!
.
.
.
tn-1 = (n-1).(n-1)! - (n-2).(n-2)!
tn = n.n! - (n-1).(n-1)!
-----------------------------
Sn = n.n!
so,
1(0!)+3(1!)+7(2!)+. . . n terms = 4000(4000!)
n.n! = 4000(4000!)
By comparison,
n = 4000.
Similar questions