Math, asked by csraofeb7892, 11 hours ago

If 1(0!)+3.(1!)+7(2!)+13(3!)+21(4!)+⋯ n terms = (4000)(4000!) Then what is the value of n.

Answers

Answered by vikkiain
0

Answer:

n = 4000

Step-by-step explanation:

Sn = 1(0!)+3(1!)+7(2!)+13(3!)+...+tn.

tn = (-n+1).(n-1)!

= .(n-1)! - (n-1).(n-1)!

= n.n! - (n-1).(n-1)!

Now,

1.(0!) = 1.1! - 0.0!

3.(1!) = 2.2! - 1.1!

7.(2!) = 3.3! - 2.2!

.

.

.

tn = n.n! - (n-1).(n-1)!

---------------------------------

Sum all terms, then

Sn = n.n!

Given, Sn = 4000(4000!) = n.n!

so,

n = 4000.

Similar questions