If 1(0!)+3.(1!)+7(2!)+13(3!)+21(4!)+⋯ n terms = (4000)(4000!) Then what is the value of n.
Answers
Answered by
0
Answer:
n = 4000
Step-by-step explanation:
Sn = 1(0!)+3(1!)+7(2!)+13(3!)+...+tn.
tn = (n²-n+1).(n-1)!
= n².(n-1)! - (n-1).(n-1)!
= n.n! - (n-1).(n-1)!
Now,
1.(0!) = 1.1! - 0.0!
3.(1!) = 2.2! - 1.1!
7.(2!) = 3.3! - 2.2!
.
.
.
tn = n.n! - (n-1).(n-1)!
---------------------------------
Sum all terms, then
Sn = n.n!
Given, Sn = 4000(4000!) = n.n!
so,
n = 4000.
Similar questions