Math, asked by vermamohit2370, 3 days ago

If 1(0!)+3.(1!)+7(2!)+13(3!)+21(4!)+⋯ n terms = (4000)(4000!) Then what is the value of n.

Answers

Answered by vikkiain
0

n = 4000

Explanation:

Given, 1(0!)+3.(1!)+7(2!)+13(3!)+21(4!)+⋯ n  \:  \: terms  \\ we \:  \: see \:  \: that \\t_{n}  = ( {n}^{2} - n + 1 )(n - )! \\ NOW, \:  \:  \sum \: t_{n} =  \sum \: ( {n}^{2} - n + 1 ) \: (n - 1)! \\ =   \sum \:  \ \{  {n}^{2} (n - 1)! - (n - 1)(n - 1)!\} \\ \sum \:  \ \{  n.n! - (n - 1)(n - 1)!\} \\  = n.n! \\ again \:  \:  \:  \: given \\ 1(0!)+3.(1!)+7(2!)+13(3!)+21(4!)+⋯ n  \:  \: terms  \\  = 4000(4000!) \\ so \:  \:  \: n = 4000.

Similar questions