Math, asked by Ironpool8659, 1 year ago

If 1 /√−√ = 1/3 and 1/√+√ = 1/2 ,then find the difference of a and b

Attachments:

Answers

Answered by MathGuy
1

√a - √b = 3

√a + √b = 2

Multiply these both

(√a - √b)(√a + √b) = 3(2)

(√a)² - (√b)² = 6 {(a+b)(a-b)=a²-b²}

a - b = 6

Hence the difference between a and b is 6.

Hope it helps!!! :)

Answered by dna63
1

❣️\textbf{\large{\blue{\underline{Step by step Explanation:-}}}}

\mathtt{\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{1}{3}}

\mathtt{\implies{\sqrt{a}-\sqrt{b}=3}}___(1)

\mathtt{\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{2}}

\mathtt{\implies{\sqrt{a}+\sqrt{b}=2}}___(2)

\textit{\underline{from (1),,}}

\mathtt{\sqrt{a}-\sqrt{b}=3}

\mathtt{\implies{\sqrt{a}=3+\sqrt{b}}}___(3)

\mathit{\underline{from(3),,the,,value,,of \sqrt{a},, putting,,in,,(2)}}

\textit{\underline{Hence,,}}

\mathtt{\sqrt{a}+\sqrt{b}=2}

\mathtt{\implies{3+\sqrt{b}+\sqrt{b}=2}}

\mathtt{\implies{2\sqrt{b}=2-3}}

\mathtt{\implies{\sqrt{b}=\frac{-1}{2}}}

\mathtt{\implies{b=(\frac{-1}{2})^{2}}}

\mathtt{\implies{b=\frac{1}{4}}}

\textit{\underline{Since,,}}

\textit{The value of,,b,,putting on (1)}

\mathtt{\sqrt{a}-\sqrt{b}=3}

\mathtt{\implies{\sqrt{a}-\sqrt{\frac{1}{4}}=3}}

\mathtt{\implies{\sqrt{a}-\frac{1}{2}=3}}

\mathtt{\implies{\sqrt{a}=3+\frac{1}{2}}}

\mathtt{\implies{\sqrt{a}=\frac{6+1}{2}}}

\mathtt{\implies{\sqrt{a}=\frac{7}{2}}}

\mathtt{\implies{a=(\frac{7}{2})^{2}}}

\mathtt{\implies{a=\frac{49}{4}}}

\textit{\underline{Since,, the difference of a and b=}}

\mathtt{a-b=\frac{1}{4}-\frac{49}{4}}

\mathtt{=\frac{1-49}{4}}

\mathtt{=\frac{-48}{4}}

\mathtt{=-12}

\textit{\underline{Hence,,}}

\textit{The value of 'a'}

\mathtt{\implies{\boxed{\pink{\frac{1}{4}}}}}

\textit{The value of 'b'}

\mathtt{\implies{\boxed{\pink{\frac{49}{4}}}}}

\textit{and, the difference of 'a' and 'b'}

\mathtt{\implies{\boxed{\pink{-12}}}}

❣️\textbf{\small{\red{Hope you like it}}}❣️

\textit{\small{\green{please mark it as Brainliest answer.. thanks}}}

Similar questions