IF 1/1!9!+1/3!7!+1/5!5!+1/7!3!+1/9!=2powern/10! then n=?
Answers
TO DETERMINE
The value of n when
CALCULATION
Here
RESULT
Hence the required value of n is 9
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
The highest exponent of 24 in 20 !
https://brainly.in/question/21368441
Step-by-step explanation:
\displaystyle\huge\red{\underline{\underline{Solution}}}
Solution
TO DETERMINE
The value of n when
\displaystyle \sf{ \frac{1}{1 \: ! \: 9 \: ! } + \frac{1}{3\: ! \: 7 \: ! } + \frac{1}{5 \: ! \: 5 \: ! } + \frac{1}{7 \: ! \: 3 \: ! } + \frac{1}{1 \: ! \: 9 \: ! } \: = \frac{ {2}^{n} }{1 0\: ! } }
1!9 3!7
CALCULATION
Here
\displaystyle \sf{ \frac{1}{1 \: ! \: 9 \: ! } + \frac{1}{3\: ! \: 7 \: ! } + \frac{1}{5 \: ! \: 5 \: ! } + \frac{1}{7 \: ! \: 3 \: ! } + \frac{1}{1 \: ! \: 9 \: ! } \: = \frac{ {2}^{n} }{1 0\: ! } }
1!9!
1
+
3!7!
1
+
5!5!
1
+
7!3!
1
+
1!9!
1
=
10!
2
n
\implies \displaystyle \sf{ \frac{10 \: !}{1 \: ! \: 9 \: ! } + \frac{10 \: !}{3\: ! \: 7 \: ! } + \frac{10 \: !}{5 \: ! \: 5 \: ! } + \frac{10 \: !}{7 \: ! \: 3 \: ! } + \frac{10 \: !}{1 \: ! \: 9 \: ! } \: = {2}^{n} }⟹
1!9!
10!
+
3!7!
10!
+
5!5!
10!
+
7!3!
10!
+
1!9!
10!
=2
n
\implies \displaystyle \sf{ \frac{10 \times 9 \: !}{\: 9 \: ! } + \frac{10 \times 9 \times 8}{3 \times 2} + \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 } + \frac{10 \times 9 \times 8}{3 \times 2 } + \frac{10 \times9 \: ! }{ 9 \: ! } \: = {2}^{n} }⟹
9!
10×9!
+
3×2
10×9×8
+
5×4×3×2
10×9×8×7×6
+
3×2
10×9×8
+
9!
10×9!
=2
n
\implies \: \displaystyle \sf{10 + 120 + 252 + 120 + 10 = {2}^{n} }⟹10+120+252+120+10=2
n
\implies \: \displaystyle \sf{ {2}^{n} = 512 }⟹2
n
=512
\implies \: \displaystyle \sf{ {2}^{n} = {2}^{9} }⟹2
n
=2
9
\implies \: \displaystyle \sf{ n = 9 }⟹n=9
RESULT
Hence the required value of n is 9
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
The highest exponent of 24 in 20 !
https://brainly.in/question/21368441