if 1^2+2^2+.......+9^2=285 then the value of( 0.11)^2+(0.22)^2+.....(0.99)^2 is
Answers
Answer
(0.11)^2+(0.22)^2+......(0.99)^2 =3.4485
Explanation
It is given that, 1^2 +2^2+3^2+......+9^2 =285
To find (0.11)^2+(0.22)^2+......(0.99)^2
(0.11)^2+(0.22)^2+......(0.99)^2 we get
(0.11 x 1)^2+(0.11 x 2)^2+......(0.11 x 9)^2
=(0.11^2 x 1^2)+(0.11^2 x 2^2)+......(0.11^2 x 9^2)
(0.11^2 )( 1^2 +2^2+3^2+......+9^2 ) ( since 0.11 is common in all terms)
it is given that 1^2 +2^2+3^2+......+9^2 = 285
Therefore,
(0.11^2 )( 1^2 +2^2+3^2+......+9^2 ) = (0.11^2 ) x 285 = 0.0121 x 285 = 3.4485
Given:
1^2 + 2^2 + 3^2 + ... + 9^2 = 285
To find:
( 0.11 )^2 + ( 0.22 )^2 +... + ( 0.99 )^2
Solution:
Taking 0.11 as the common factor,
( 0.11 * 1 )^2 + ( 0.11 * 2 )^2 + ... + ( 0.11 * 9 )^2
Multiplying ^2,
( 0.11^2 * 1^2 ) + ( 0.11^2 * 2^2 ) + ... + ( 0.11^2 * 9^2)
Grouping,
( 0.11^2 ) ( 1^2 + 2^2 + 3^2 + ... + 9^2 )
Substituting,
(0.11^2 ) x 285
0.0121 x 285
3.4485
Hence, ( 0.11 )^2 + ( 0.22 )^2 +... + ( 0.99 )^2 = 3.4485