Math, asked by sirjanabasnet941, 1 month ago

If (1,2), (3,0), (a,4), (5,b) are the vertices of parallelogram, find the value of a and b​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that the vertices of parallelogram are (1,2), (3,0), (a,4) and (5,b).

Let us assume the vertices as A, B, C, D such that

  • A (1,2)

  • B (3,0)

  • C (a,4)

  • D (5,b)

Concept Used :-

We know,

In parallelogram, diagonals bisect each other.

So in order to find the values of a and b from the given vertices of A, B, C, D taken in order forms a parallelogram, we use the concept that midpoint of AC is equals to midpoint of BD.

Now,

Midpoint Formula :-

Let us consider a line segment joining the points A and B and let C (x, y) be the midpoint of AB, then coordinates of C is

\boxed{ \quad\sf \:( x, y) = \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg) \quad}

\sf \: where \: coordinates \: of \: A \: and \: B \: are \: (x_1,y_1) \: and \: B(x_2,y_2)

Now,

Let us first find midpoint of AC.

  • Coordinates of A = ( 1, 2)

  • Coordinates of C = (a, 4)

Using midpoint Formula,

\boxed{ \quad\sf \:Midpoint \: of \: AC= \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg) \quad}

Here,

  • x₁ = 1

  • x₂ = a

  • y₁ = 2

  • y₂ = 4

So,

\rm :\longmapsto\:{ \quad\sf \:Midpoint \: of \: AC= \bigg(\dfrac{1+a}{2} , \dfrac{2+4}{2} \bigg) \quad}

\rm :\longmapsto\:{ \quad\sf \:Midpoint \: of \: AC= \bigg(\dfrac{1+a}{2} , \dfrac{6}{2} \bigg) \quad}

\boxed{ \quad\sf \:Midpoint \: of \: AC= \bigg(\dfrac{1+a}{2} , \:  3 \bigg) \quad}

Now,

Lets find midpoint of BD.

  • Coordinates of A = ( 3, 0)

  • Coordinates of C = (5, b)

Using midpoint Formula,

\boxed{ \quad\sf \:Midpoint \: of \:BD = \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg) \quad}

\rm :\longmapsto\:{ \quad\sf \:Midpoint \: of \:BD = \bigg(\dfrac{3+5}{2} , \dfrac{0+b}{2} \bigg) \quad}

\rm :\longmapsto\:{ \quad\sf \:Midpoint \: of \:BD = \bigg(\dfrac{8}{2} , \dfrac{b}{2} \bigg) \quad}

\boxed{ \quad\sf \:Midpoint \: of \:BD = \bigg(4 , \:  \dfrac{b}{2} \bigg) \quad}

Now, we have

Midpoint of AC = Midpoint of BD

So,

\boxed{ \quad\sf \: \bigg( \dfrac{a + 1}{2}, \:3 \bigg) \:  =  \:  \bigg(4 , \:  \dfrac{b}{2} \bigg) \quad}

So, on comparing, we get

\rm :\longmapsto\:\dfrac{a + 1}{2}  = 4

\rm :\longmapsto\:a + 1 = 8

\bf\implies \:a = 7

Also,

\rm :\longmapsto\:\dfrac{b}{2}  = 3

\bf\implies \:b = 6

Similar questions