Math, asked by yaduvanshi2754, 9 months ago

If 1/(2√3+√7) =a√3 +b√7, then a and b are​

Answers

Answered by AlluringNightingale
1

Answer:

a = 2/5 , b = -1/5

Solution:

  • Given : 1/(2√3 + √7) = a√3 + b√7
  • To find : a , b = ?

We have ;

1/(2√3 + √7) = a√3 + b√7

Thus,

a√3 + b√7 = 1/(2√3 + √7)

Now,

Rationalising the denominator of the term in RHS , we have ;

a√3 + b√7

= 1/(2√3 + √7)

= (2√3 - √7)/(2√3 + √7)(2√3 - √7)

= (2√3 - √7)/[ (2√3)² - (√7)² ]

= (2√3 - √7)/(12 - 7)

= (2√3 - √7)/5

= 2√3/5 - √7/5

= (2/5)•√3 + (-1/5)•√7

Thus,

a√3 + b√7 = (2/5)•√3 + (-1/5)•√7

On comparing like terms both the sides ,

We have ; a = 2/5 and b = -1/5

Hence,

a = 2/5

b = -1/5

Similar questions