Math, asked by stellaroy2403, 12 hours ago

If 1,ω,ω² are three cube roots of unity, show that (a+ωb+ω²c) (a+ω²b+ωc)=a²+b²+c²−ab−bc−ca​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{(a+\omega\,b+\omega^{2}\,c)(a+\omega^{2}\,b+\omega\,c)}

Here, 1,ω,ω²  are the cube roots of unity

So,

1+ω+ω²=0 and  ω³=1   ...(1)

Now, expanding the given expression

\sf{a(a+\omega^2\,b+\omega\,c)+\omega\,b(a+\omega^2\,b+\omega\,c)+\omega^2\,c(a+\omega^2\,b+\omega\,c)}

\sf{=\,a^2+ab\,\omega^2+ac\,\omega+ab\,\omega+b^2\,\omega^3+bc\,\omega^2+ac\,\omega^2+bc\,\omega^4+c^2\,\omega^3}

\sf{=\,a^2+ab\,\omega^2+ac\,\omega+ab\,\omega+b^2(1)+bc\,\omega^2+ac\,\omega^2+bc\,\omega^3\cdot\omega+c^2(1)}

\sf{=\,a^2+ab\,\omega^2+ac\,\omega+ab\,\omega+b^2+bc\,\omega^2+ac\,\omega^2+bc(1)\cdot\omega+c^2}

\sf{=\,a^2+ab\,\omega^2+ac\,\omega+ab\,\omega+b^2+bc\,\omega^2+ac\,\omega^2+bc\,\omega+c^2}

\sf{=\,a^2+b^2+c^2+ab\,\omega^2+ab\,\omega+ac\,\omega+ac\,\omega^2+bc\,\omega^2+bc\,\omega}

\sf{=\,a^2+b^2+c^2+ab(\omega^2+\omega)+ac(\omega+\omega^2)+bc(\omega^2+\omega)}

From (1) we get,

1+ω+ω²=0

=> ω+ω²=-1

So,

\sf{=\,a^2+b^2+c^2+ab(-1)+ac(-1)+bc(-1)}

\sf{=\,a^2+b^2+c^2-ab-bc-ca}

Similar questions