Math, asked by SuratSat, 11 months ago

If (-1/2+ i√3/2)^1000 = a+ib, find the values of a and b​

Answers

Answered by pulakmath007
1

SOLUTION

GIVEN

 \displaystyle \sf{ { \bigg( -  \frac{1}{2}  + i  \frac{ \sqrt{3} }{2}  \bigg)}^{1000}  = a + ib}

TO DETERMINE

The value of a and b

CONCEPT TO BE IMPLEMENTED

Complex Number

A complex number z = a + ib is defined as an ordered pair of Real numbers ( a, b) that satisfies the following conditions :

(i) Condition for equality :

(a, b) = (c, d) if and only if a = c, b = d

(ii) Definition of addition :

(a, b) + (c, d) = (a+c, b+ d)

(iii) Definition of multiplication :

(a, b). (c, d) = (ac-bd , ad+bc )

Of the ordered pair (a, b) the first component a is called Real part of z and the second component b is called Imaginary part of z

EVALUATION

Here it is given that

 \displaystyle \sf{ { \bigg( -  \frac{1}{2}  + i  \frac{ \sqrt{3} }{2}  \bigg)}^{1000}  = a + ib}

First we simplify

 \displaystyle \sf{ { \bigg( -  \frac{1}{2}  + i  \frac{ \sqrt{3} }{2}  \bigg)}^{1000}  }

 \therefore \:  \:  \displaystyle \sf{ { \bigg( -  \frac{1}{2}  + i  \frac{ \sqrt{3} }{2}  \bigg)}^{1000}  }

 =  \displaystyle \sf{ { \bigg(   \frac{1}{2}   -  i  \frac{ \sqrt{3} }{2}  \bigg)}^{1000}  }

 =  \displaystyle \sf{ { \bigg(   \cos  \frac{\pi}{3}    -  i   \sin  \frac{\pi}{3}  \bigg)}^{1000}  }

  \displaystyle \sf{  = { \bigg(   \cos  \frac{1000\pi}{3}    -  i   \sin  \frac{1000\pi}{3}  \bigg)}  } \:  \: Using De Moivre's Theorem

  \displaystyle \sf{  = { \bigg(   \cos   {60000}^{ \circ}    -  i   \sin  {60000}^{ \circ}    \bigg)}  }

=  \displaystyle \sf{ -  \frac{1}{2} + i \frac{ \sqrt{3} }{2}  }

 \therefore \:  \:  \displaystyle \sf{ -  \frac{1}{2} + i \frac{ \sqrt{3} }{2}  = a + ib }

Comparing we get

 \displaystyle \sf{ a = -  \frac{1}{2}  \:  \: and \:  \: b =  \frac{ \sqrt{3} }{2}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 4x + (3x – y)i = 3 – 6i , then values of x and y.

(a)x=3/4, y=33/4, (b) x=33/4, y=3/4 (c) x=-33/4, y=3 (d) x=-2, y=

https://brainly.in/question/29610963

2. Prove z1/z2 whole bar = z1 bar/z2 bar.

Bar here means conjugate

https://brainly.in/question/16314493

Similar questions