Math, asked by Anonymous, 1 year ago

If√(1+27/169)=1+x/13,find thw value of x?

Answers

Answered by Anonymous
60
Hey dear!


Here is yr answer.....


 =  >  \sqrt{( \frac{1 + 27}{169} )}  =  \frac{1 + x}{13}  \\  \\  =  >  \frac{1 +  \sqrt{27} }{13}  =  \frac{1 + x}{13}  \\  \\   =  > (13)(1 +  \sqrt{27} ) = (1 + x)(13) \\  \\  =  > 13 + 13 \sqrt{27}  = 13 + 13x \\  \\  =  >  13 \sqrt{27} - 13x  = 13 - 13 \\  \\  =  > 13 \sqrt{27}  - 13x = 0 \\  \\  =  >  - 13x =  - 13 \sqrt{27}  \\  \\  =  > x =  \frac{ - 13 \sqrt{27} }{ - 13}  \\  \\  =  > x =  \sqrt{27}

Hope it hlpz....

Anonymous: its wrong I think as the answer is three
Anonymous: ya
Anonymous: if it is cube root... then the answer is 3
Answered by AdorableMe
235

Given,

\sf{\sqrt{1+\dfrac{27}{169} }=1+\dfrac{x}{13}  }

Objective :-

To find the value of x.

Solution :-

\sf{\sqrt{1+\dfrac{27}{169} }=1+\dfrac{x}{13}  }\\\\\displaystyle{\sf{\longrightarrow \sqrt{\frac{169+27}{169} } =1+\frac{x}{13} }}\\\\\displaystyle{\sf{\longrightarrow \sqrt{\frac{196}{169}}=\frac{13+x}{13}  }}\\\\\displaystyle{\sf{\longrightarrow \frac{14}{13}=\frac{13+x}{13}  }}\\\\\displaystyle{\sf{\longrightarrow 14\times13=13(13+x)}}\\\\\displaystyle{\sf{\longrightarrow 182=169+13x}}\\\\\displaystyle{\sf{\longrightarrow 196-182=13x}}\\\\\displaystyle{\sf{\longrightarrow 13=13x}}\\\\

\large\displaystyle{\sf{\color{lime}{\longrightarrow x=1 }}}

Similar questions