If 1^3 +2^3 + 3^3 + … + a^3 = 5041. Then find 1 + 2 + 3 + . . . +a.
1 point
Answers
Given : 1³ + 2³ + 3³ + ...... + a³ = 5041
To find : 1 + 2 + 3 + ...... + a = ?
solution : we know,
1³ + 2³ + 3³ + 4³ + ..... + n³ = [n(n + 1)/2]²
also 1 + 2 + 3 + 4 + .......+ n = n(n + 1)/2
so, 1³ + 2³ + 3³ + ...... + a³ = [a(a + 1)/2]² ......(1)
and 1 + 2 + 3 + ..... + a = a(a + 1)/2 .....(2)
from equations (1) and (2) we get,
1³ + 2³ + 3³ + ...... + a³ = (1 + 2 + 3 + ... + a)²
⇒5041 = (1 + 2 + 3 + .... + a)²
⇒1 + 2 + 3 + .... + a = √5041 = 71
Therefore value of 1 + 2 + 3 + .... + a = 71
Value of 1 + 2 + 3 + .... + a = 71
Step-by-step explanation:
Given: 1³ + 2³ + 3³ + ...... + a³ = 5041
Find: Value of 1 + 2 + 3 + ...... + a
Solution:
Formula for summation are as follows:
1³ + 2³ + 3³ + 4³ + ..... + n³ = [n(n + 1)/2]²
1 + 2 + 3 + 4 + .......+ n = n(n + 1)/2
Given that 1³ + 2³ + 3³ + ...... + a³ = 5041.
It can also be written as:
1³ + 2³ + 3³ + ...... + a³ = [a(a + 1)/2]² ---------------(1)
1 + 2 + 3 + ..... + a = a(a + 1)/2 ---------------(2)
Substituting equation (2) in (2), we get:
1³ + 2³ + 3³ + ...... + a³ = (1 + 2 + 3 + ... + a)²
5041 = (1 + 2 + 3 + .... + a)²
So (1 + 2 + 3 + .... + a) = √5041 = 71