Math, asked by swenithiedu, 7 months ago

if (1+3+5+....+n terms)/1+2+3+...n terms) = 12/7 what is the value of n

Answers

Answered by ritikasood325
11

Step-by-step explanation:

For first AP:

a = 1, d = 3-1 = 2

For Second AP:

a = 1, d = 2-1 = 1

 \frac{sum \: of \: n \: terms \: of \: 1st \: a.p. }{sum \: of \: n \: terms \: of \: 2nd \: a.p. }  =  \frac{12}{7}

 \frac{ \frac{n}{2}(2a +(n - 1)d)}{ \frac{n}{2}(2a+(n - 1)d)}  =  \frac{12}{7}

 \frac{(2 \times 1 + (n - 1) \times 2)}{(2 \times 1 + (n - 1) \times 1)}  =  \frac{12}{7}

 \frac{(2 + 2n - 2) }{(2 + n - 1)}  =  \frac{12}{7}

 \frac{2n}{n + 1}  =  \frac{12}{7}

14n \:  = 12n + 12

14n - 12n = 12

2n = 12

n =  \frac{12}{2}

n = 6

Hope this answer help u...

Pls follow me and Mark me as brainliest

Similar questions