Math, asked by parkavi30, 11 months ago

If 1+3+5+..... n terms/2+4+6..... 52 terms =2/51 then the value of n is​

Answers

Answered by DhanyaDA
8

Given.

1+3+5+..... n terms/2+4+6..... 52 terms =2/51

To find

The value of n

Explanation

Consider them as A.P 1 and A.P 2

Now,

A.P 1:

1,3,5,7.........n terms

\boxed{\sf sum \: of \: n\: terms \:of\: A.P ,  S_n=\dfrac{n}{2}(2a+(n-1)d)}

Here

a₁=a=1

common difference=d=a₂-a₁

d=3-1=2

Substituting in the formula

S_1=\dfrac{n}{2}(2(1)+(n-1)2)

S_1=\dfrac{n}{2}(2+2n-2)

S_1=\dfrac{n}{2}\times2n

S_1=n^2.........(1)

A.P 2:

2,4,6,.............52 terms

Here a¹=a=2

d=4-2=2

Substituting the values

S_2=\dfrac{52}{2}(2(2)+(52-1)2)

S_2=26(4+102)

S_6=26(106)

S_6=2756.......(2)

given

\underline {\sf\dfrac{(1)}{(2)}=\dfrac{2}{51}}

 \dfrac{ {n}^{2} }{2756}  =  \dfrac{2}{51}

 {n}^{2}  =  \dfrac{2756 \times 2}{51}  \\  \\  =  > n = 10 \: terms \:

approximately

Answered by Shubhendu8898
26

Answer: n = 10

Step-by-step explanation:

Given,

\frac{1+3+5+................n\;terms}{2+4+6+................50\;terms}=\frac{2}{51}

Considering first Arithmetic series in numerator:-

First Term = 1

Common Difference = 3 - 1 = 2

Number of terms = n

Let the sum of terms be S₁

We know that,

S₁ = n/2(2a + (n-1)d)

S₁ = n/2[(2×1) + 2(n-1)]

S₁ = n/2[2 + 2n - 2]

S₁ = n/2 × 2n

S₁ = n²

Considering first Arithmetic series in Denominator:-

First Term = 2

Common Difference = 4 - 2 = 2

Number of terms (n) = 50

Let the sum of terms be S₂

We know that,

S₂ = n/2(2a + (n-1)d)

S₂ = 50/2[(2×2) + 2(50 - 1)]

S₂ = 25[4 + 2*49]

S₂ = 25[4 + 98]

S₂ = 25 × 102

S₂ = 2550

So we have,

\frac{S_1}{S_2}=\frac{2}{51}

\frac{n^2}{2550}=\frac{2}{51}\\\;\\n^2=\frac{2\times2550}{51}\\\;\\n^2=50\times2\\\;\\n^2=100\\\;\\n=10

Similar questions