Math, asked by shubneet21, 2 months ago

if 1+4√3i = (a+ib)^2
prove that a^2 - b^2 = 1 and ab = 2√3​

Attachments:

Answers

Answered by sandy1816
3

1 + 4 \sqrt{3} i = ( {a + ib})^{2}...(1) \\ taking \: conjugate \: of \: euation \:  \: (1) \\  \\ 1 - 4 \sqrt{3} i = ( {a - ib})^{2} ...(2) \\  \\ (1) + (2) \to \\  \\ ( {a + ib})^{2}  + ( {a - ib})^{2}  = 2 \\  \implies \:  {a}^{2}  -  {b}^{2}  + 2iab +  {a}^{2}  -  {b}^{2}  - 2iab = 2 \\  \implies \: 2( {a}^{2}  -  {b}^{2} ) = 2 \\   \implies \:  {a}^{2}  -  {b}^{2}  = 1 \\  \\  \\ (1)  - (2) \to \\  \\ ( {a + ib})^{2}  - ( {a - ib})^{2}  = 1 + 4 \sqrt{3} i - 1 + 4 \sqrt{3} i \\  \implies \:  {a}^{2}  -  {b}^{2}  + 2iab  -  {a}^{2}  +  {b}^{2}  + 2iab = 8i \sqrt{3}  \\  \implies \: 4iab = 8 \sqrt{3} i \\  \implies \: ab = 2 \sqrt{3}

Similar questions