Math, asked by aishanidhyani393, 2 months ago

if 1/√5+2+1/2+√3+1/√3+√2+1/√2+1 = a+b√c, then find the value of a+b+c.

please give the full explanation of the answer. it's a humble request to all

Answers

Answered by krishnakant673558
1

I solved it till here. hope it helps you.

i think squaring both sides will bring some thing new.

It will give you the value of a square + BC you can transfer BC on another site and it will give you the value of a square. you can transfer bc on another side and then transfer the square root on another side and get the value of a and then put the value of a in the given equation and get the value of b and c respectively.

and finally add them.

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{1}{ \sqrt{5}  + 2}  + \dfrac{1}{2 +  \sqrt{3} }  + \dfrac{1}{ \sqrt{3}  +  \sqrt{2} }  + \dfrac{1}{ \sqrt{2} +1 }  = a + b \sqrt{c}

Consider,

\rm :\longmapsto\:\dfrac{1}{ \sqrt{5} + 2 }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{5}  + 2}  \times \dfrac{ \sqrt{5}  - 2}{ \sqrt{5}  - 2}

We know,

\underbrace{\boxed{ \tt{(x + y)(x - y) =  {x}^{2} -  {y}^{2} }}}

So, using this identity, we get

\rm \:  =  \:  \: \dfrac{ \sqrt{5} - 2 }{ {( \sqrt{5}) }^{2}  -  {(2)}^{2} }

\rm \:  =  \:  \: \dfrac{ \sqrt{5} - 2 }{ 5 - 4 }

\rm \:  =  \:  \: \dfrac{ \sqrt{5} - 2 }{ 1 }

\rm \:  =  \:  \:  \sqrt{5} - 2

Consider,

\rm :\longmapsto\:\dfrac{1}{2 +  \sqrt{3} }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{(2) ^{2}  -  (\sqrt{3})^{2}  }

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{4 - 3}

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{1}

\rm \:  =  \:  \: 2 -  \sqrt{3}

Consider,

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{2} }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{3}  +  \sqrt{2} }  \times \dfrac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{( \sqrt{3} ) ^{2}  -  (\sqrt{2})^{2}  }

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{3 - 2}

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{1}

\rm \:  =  \:  \:  \sqrt{3} -  \sqrt{2}

Consider,

\rm :\longmapsto\:\dfrac{1}{ \sqrt{2}  + 1}

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{2}  + 1}  \times \dfrac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}

\rm \:  =  \:  \:  \dfrac{ \sqrt{2}  - 1}{ (\sqrt{2})^{2}   - 1^{2} }

\rm \:  =  \:  \:  \dfrac{ \sqrt{2}  - 1}{ 2 - 1 }

\rm \:  =  \:  \:  \dfrac{ \sqrt{2}  - 1}{1 }

\rm \:  =  \:  \:  \sqrt{2} - 1

Now, Consider the given expression,

\rm :\longmapsto\:\dfrac{1}{ \sqrt{5}  + 2}  + \dfrac{1}{2 +  \sqrt{3} }  + \dfrac{1}{ \sqrt{3}  +  \sqrt{2} }  + \dfrac{1}{ \sqrt{2} +1 }  = a + b \sqrt{c}

can be rewritten as by substituting the values evaluated above,

\rm :\longmapsto\: \sqrt{5} - 2 + 2 -  \sqrt{3}  +  \sqrt{3} -  \sqrt{2} +  \sqrt{2} - 1   = a + b \sqrt{c}

\rm :\longmapsto\: \sqrt{5}  - 1   = a + b \sqrt{c}

can be re-arranged as

\rm :\longmapsto\: - 1 + 1 \times  \sqrt{5}  = a + b \sqrt{c}

So, on comparing we get

\bf\implies \:a =  - 1

\bf\implies \:b =  1

\bf\implies \:c =  5

Similar questions