Math, asked by naneihilovemom5640, 1 year ago

If 1+5+9+.......+x=780 what is the value of x

Answers

Answered by REVANTHMAHINDRA
18
Sn=n(2a+(n-1)d)/2. [1]
an=a+(n-1)d. [2]
Sn=780
a=1
d=4
an=x
from [1]
780=n(2(1)+(n-1)4)/2=>n(2+4n-4)/2=>n(4n-2)/2
780= 2n^2-n
2n^2-n-780=0
780=40×39
2n^2-40n+39n-780=0
2n(n-20)+39(n-20)=0
(2n+39)(n-20)=0
n=20 or -39/2
n=20
from[2]
x=1+(20-1)4
x=1+19×4
x=1+76
x=77
Answered by PoojaBurra
2

Given,

1+5+9+      +x=780

To Find,

The value of x =?

Solution,

We can solve the question using the following steps:
Considering the given series, 1+5+9+     +x=780

The difference between the numbers,

5 - 1 = 4

9 - 5 = 4

Therefore, the given series is in Arithmetic Progression.

Now,

Sum of terms in AP = \frac{n}{2} (2a + (n - 1)d)   ------------ (1)

Here,  d = common difference

          n = the total number of terms

           a = the first term

To find n,

T_{n}  = a + (n - 1)d

T_{last} =  x = 1 + (n - 1)4

        x = 1 + 4n - 4

         x = 4n - 3

         x + 3 = 4n

         n = \frac{x + 3}{4}

Now, substituting the given values in equation (1),

780 = \frac{\frac{x + 3}{4} }{2} (2*1 + (\frac{x + 3}{4} - 1)4)

780 = \frac{x + 3}{8} (2 + (\frac{x - 1}{4} )4)

780 = \frac{x + 3}{8} (2 + x -1)

780 = \frac{x + 3}{8} (1 + x)

780 =\frac{x + x^{2} + 3 + 3x}{8}

6240 = x^{2}  + 4x + 3

x^{2}  + 4x - 6237 = 0

Solving the above question, the roots are -81 and 77. Since, the value cannot be negative, x = 77.

Hence, the value of x is equal to 77.

Similar questions