Math, asked by senkithan, 11 months ago

If 1/6x²-7x+2 = A/3x-2 +B/2x-1, then A³+B³=​

Answers

Answered by MaheswariS
1

Answer:

The value of  A^3+B^3 is 19

Step-by-step explanation:

Given:

\frac{1}{6x^2-7x+2}=\frac{A}{3x-2}+\frac{B}{2x-1}

\implies\frac{1}{(3x-2)(2x-1)}=\frac{A(2x-1)+B(3x-2)}{(3x-2)(2x-1)}

\implies\,1=A(2x-1)+B(3x-2)

put\,x=\frac{1}{2}

1=A(2(\frac{1}{2})-1)+B(3(\frac{1}{2})-2)

1=B(\frac{3}{2}-2)

1=B(\frac{-1}{2})

\implies\boxed{\bf\,B=-2}

put\,x=\frac{2}{3}

1=A(2(\frac{2}{3})-1)+B(3(\frac{2}{3})-2)

1=A(\frac{1}{3})

\implies\boxed{\bf\,A=3}

Now

A^3+B^3

=(3)^3+(-2)^3

=27-8

=19

Answered by isyllus
0

The value of A³+B³ is 19

Step-by-step explanation:

\dfrac{1}{6x^2-7x+2}=\dfrac{A}{3x-2}+\dfrac{B}{2x-1}

Using partial fraction,

\dfrac{1}{6x^2-7x+2}=\dfrac{A(2x-1)+B(3x-2)}{(3x-2)(2x-1)}

\dfrac{1}{6x^2-7x+2}=\dfrac{2Ax-A+3Bx-2B}{6x^2-7x+2}

Compare the coefficient of numerator and make equation.

1=(2A+3B)x-A-2B

2A+3B=0 and

-A-2B=1  multiply by 2

-2A-4B=2

-B = 2

B = -2

A = 3

Now calculate the value of A³+B³

\Rightarrow 3^3+(-2)^3

\Rightarrow 27-8

\Rightarrow 19

Hence, the value of A³+B³ is 19

#Learn more:

https://brainly.in/question/7611934

Similar questions