Math, asked by kpkdvoda14, 1 month ago

if 1/8! + 1/9! = n/10! , find n. a)90 b)100 c)110 d)80​

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{1}{8!}  + \dfrac{1}{9!}  = \dfrac{n}{10!}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:Value \: of \: n

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{1}{8!}  + \dfrac{1}{9!}  = \dfrac{n}{10!}

\rm :\longmapsto\:n \:  =  \: \dfrac{10!}{8!}  + \dfrac{10!}{9!}

\rm :\longmapsto\:n \:  =  \: \dfrac{10 \times 9 \times 8!}{8!}  + \dfrac{10 \times 9!}{9!}

\rm :\longmapsto\:n = 90 + 10

\bf\implies \:n = 100

Option (b) is correct

Note :-

Short Cut Trick :-

If x and y are natural numbers, such that

\rm :\longmapsto\:\dfrac{x}{(y + 2)!}  = \dfrac{1}{(y + 1)!}  + \dfrac{1}{y!}  \: then \: x=  {(y + 2)}^{2}

Here,

\rm :\longmapsto\:\dfrac{1}{8!}  + \dfrac{1}{9!}  = \dfrac{n}{10!}

\rm :\longmapsto\:\dfrac{1}{8!}  + \dfrac{1}{(8 + 1)!}  = \dfrac{n}{(8 + 2)!}

\bf\implies \:n =  {(8 + 2)}^{2} =  {10}^{2}   = 100

Remark :-

\rm :\longmapsto\:0! = 1

Similar questions