Math, asked by incepatorop, 1 month ago

If 1 + 9r² + 81 r² = 256 and 1 + 3r+9r² = 32, then find the value of 1- 3r+9r².​

Answers

Answered by amitnrw
4

Given :   1 + 9r² + 81 r⁴ = 256 and 1 + 3r+9r² = 32,

To Find : the value of 1- 3r+9r².​

4

8

16

12

Solution:

Assume that

1- 3r+9r².​  = k

1 + 3r+9r² = 32

multiply both

=> ((1  + 9r² ) - 3r)((1  + 9r² ) + 3r)  = 32k

=> (1 + 9r²)² - (3r)²  = 32k

=> 1 + 81r⁴ + 18r²   - 9r²  = 32k

=> 1 + 81r⁴ + 9r² = 32k

=>  256  = 32k

=> k = 8

=> 1 - 3r+9r².​  = 8

Additional Info : Data is inconsistent :

1 + 3r+9r² = 32

1 - 3r+9r².​  = 8

on subtracting  6r = 24 => r = 4

on adding

1 + 9r² = 20

=>   9r² = 19 where r ≠ 4

Another method :

(a + b + c)²  = a² + b² + c²  + 2(ab + bc + ca)

a = 1

b = 3r

c = 9r²

(1 + 3r + 9r²)²  =  1 + 9r² + 81 r⁴  + 2 (3r + 27r³  + 9r²)

=> 32² = 256  +   2  (3r + 27r³  + 9r²)

=> 384  = (3r + 27r³  + 9r²)

=> 128 = r(1 + 9r² + 3r)

=> 128 = r ( 32)

=> r = 4

but r = 4 does not satisfy any of the equation

any ways   1 - 3r+9r².​  = 8

Learn More:

If a+b+c=6 and a2+b2+c2=14 and a3+b3+c3=36 find value of abc ...

brainly.in/question/5958601

if a+b+c=10 and a2+b2+c2=38 a3+b3+c3=160 find abc

brainly.in/question/17672372

Similar questions