if 1/(a+b+x) =1/a + 1/b + 1/x,. then find the value of x.
Answers
Answered by
7
1/(a+b+x) =1/a + 1/b + 1/x
Multiply abx on both sides ,
abx/(a+b+x) = bx + ax + ab
transpose (a+b+x) from LHS to RHS and solve , we get
abx = (a+b)x + (a+b)x² + (a+b)ab + abx
Dividing by a+b , we get
x² + (a+b)x + ab =0
(x+a)(x+b) = 0
x = -a,-b
Answered by
2
Answer :-
______________________
Given , 1 / ( a + b + x ) = 1 / a + 1 / b + 1 / x
To find the value of x
Now ,
1 / ( a + b + x ) = 1 / a + 1 / b + 1 / x
=> 1 / ( a + b + x ) - 1 / x = 1 / a + 1 / b
=> ( x - a - b - x ) / x ( a + b + x ) = ( b + a ) / ab
=> ( - a - b ) / ( ax + bx + x² ) = ( a + b ) / ab
=> - ( a + b ) / ( ax + bx + x² ) = ( a + b ) / ab
=> - 1 / ( ax + bx + x² ) = 1 / ab
=> ax + bx + x² = - ab
=> x² + bx + ax + ab = 0
=> x ( x + b ) + a ( x + b ) = 0
=> ( x + a ) ( x + b ) = 0
Now ,
Either ,
( x + a ) = 0
x = - a
Or ,
( x + b ) = 0
x = - b
So , the values of x are - a and - b
____________________________
★ Be Brainly ★
______________________
Given , 1 / ( a + b + x ) = 1 / a + 1 / b + 1 / x
To find the value of x
Now ,
1 / ( a + b + x ) = 1 / a + 1 / b + 1 / x
=> 1 / ( a + b + x ) - 1 / x = 1 / a + 1 / b
=> ( x - a - b - x ) / x ( a + b + x ) = ( b + a ) / ab
=> ( - a - b ) / ( ax + bx + x² ) = ( a + b ) / ab
=> - ( a + b ) / ( ax + bx + x² ) = ( a + b ) / ab
=> - 1 / ( ax + bx + x² ) = 1 / ab
=> ax + bx + x² = - ab
=> x² + bx + ax + ab = 0
=> x ( x + b ) + a ( x + b ) = 0
=> ( x + a ) ( x + b ) = 0
Now ,
Either ,
( x + a ) = 0
x = - a
Or ,
( x + b ) = 0
x = - b
So , the values of x are - a and - b
____________________________
★ Be Brainly ★
Similar questions