If 1, a1, a2, …, an−1 be the roots of the equation x
n - 1 = 0, n ∈, n ≥ 2 show that
n = (1 − a1) (l − a2)(1 − a3) … (1 − an-1)
Answers
Answer:
Solution :
\bf{\red{\underline{\bf{Given\::}}}}
Given:
The denominator of a fraction is 1 more than double of the numerator.If both the numerator and the denominator are increased by 4,the fraction becomes 3/5.
\bf{\red{\underline{\bf{To\:find\::}}}}
Tofind:
The fraction.
\bf{\red{\underline{\bf{Explanation\::}}}}
Explanation:
Let the numerator be r
Let the denominator be m
A/q
\longrightarrow\sf{m=2r+1...................(1)}⟶m=2r+1...................(1)
&
\begin{lgathered}\longrightarrow\sf{\dfrac{r+4}{m+4} =\dfrac{3}{5} }\\\\\\\longrightarrow\sf{5(r+4)=3(m+4)}\\\\\\\longrightarrow\sf{5r+20=3m+12}\\\\\\\longrightarrow\sf{5r-3m=12-20}\\\\\\\longrightarrow\sf{5r-3m=-8}\\\\\\\longrightarrow\sf{5r-3(2r+1)=-8\:\:\:[from(1)]}\\\\\\\longrightarrow\sf{5r-6r-3=-8}\\\\\\\longrightarrow\sf{-r=-8+3}\\\\\\\longrightarrow\sf{\cancel{-}r=\cancel{-}5}\\\\\\\longrightarrow\sf{\blue{r=5}}\end{lgathered}
⟶
m+4
r+4
=
5
3
⟶5(r+4)=3(m+4)
⟶5r+20=3m+12
⟶5r−3m=12−20
⟶5r−3m=−8
⟶5r−3(2r+1)=−8[from(1)]
⟶5r−6r−3=−8
⟶−r=−8+3
⟶
−
r=
−
5
⟶r=5
Putting the value of r in equation (1),we get;
\begin{lgathered}\longrightarrow\sf{m=2(5)+1}\\\\\longrightarrow\sf{m=10+1}\\\\\longrightarrow\sf{\blue{m=11}}\end{lgathered}
⟶m=2(5)+1
⟶m=10+1
⟶m=11
Thus;
Step-by-step explanation:
Solution :
\bf{\red{\underline{\bf{Given\::}}}}
Given:
The denominator of a fraction is 1 more than double of the numerator.If both the numerator and the denominator are increased by 4,the fraction becomes 3/5.
\bf{\red{\underline{\bf{To\:find\::}}}}
Tofind:
The fraction.
\bf{\red{\underline{\bf{Explanation\::}}}}
Explanation:
Let the numerator be r
Let the denominator be m
A/q
\longrightarrow\sf{m=2r+1...................(1)}⟶m=2r+1...................(1)
&
\begin{lgathered}\longrightarrow\sf{\dfrac{r+4}{m+4} =\dfrac{3}{5} }\\\\\\\longrightarrow\sf{5(r+4)=3(m+4)}\\\\\\\longrightarrow\sf{5r+20=3m+12}\\\\\\\longrightarrow\sf{5r-3m=12-20}\\\\\\\longrightarrow\sf{5r-3m=-8}\\\\\\\longrightarrow\sf{5r-3(2r+1)=-8\:\:\:[from(1)]}\\\\\\\longrightarrow\sf{5r-6r-3=-8}\\\\\\\longrightarrow\sf{-r=-8+3}\\\\\\\longrightarrow\sf{\cancel{-}r=\cancel{-}5}\\\\\\\longrightarrow\sf{\blue{r=5}}\end{lgathered}
⟶
m+4
r+4
=
5
3
⟶5(r+4)=3(m+4)
⟶5r+20=3m+12
⟶5r−3m=12−20
⟶5r−3m=−8
⟶5r−3(2r+1)=−8[from(1)]
⟶5r−6r−3=−8
⟶−r=−8+3
⟶
−
r=
−
5
⟶r=5
Putting the value of r in equation (1),we get;
\begin{lgathered}\longrightarrow\sf{m=2(5)+1}\\\\\longrightarrow\sf{m=10+1}\\\\\longrightarrow\sf{\blue{m=11}}\end{lgathered}
⟶m=2(5)+1
⟶m=10+1
⟶m=11
Thus;