Math, asked by Bobby8178, 1 year ago

If 1 and -1 are zeroes of polynomial Lx^4 + Mx^3 + Nx^2 + Rx + P , show that L + N + P = M + R = 0.

Answers

Answered by hukam0685
7
hopefully it helps you
_***___________****
Attachments:
Answered by varshhaindar04
4

Answer:

Step-by-step explanation:

p(x)=Lx^4 + Mx^3 + Nx^2 + Rx + P

p(1)=L(1^4) + M(1^3) + N(1^2) + R(1) + P=0

    => L+M+N+R+P=0                        ...(i)

p(-1)=L(-1^4) + M(-1^3) + N(-1^2) + R(-1) + P=0

    => L-M+N-R+P=0                         ...(ii)

From (i) & (ii),

L+M+P=M+R=0

Hence proved!!

Similar questions