If 1 and -1 are zeros of the polynomial Lx4 + Mx3 +Nx2 +Rx + p . Show that L+N+P=M+R=0
Answers
GIVEN:
- Lx⁴ + Mx³ + Nx² + Rx + P
- x = 1 and x = - 1
TO PROVE:
- L + N + P = M + R = 0
PROOF:
Substitute x = 1 in Lx⁴ + Mx³ + Nx² + Rx + P
L(1)⁴ + M(1)³ + N(1)² + R(1) + P = 0
L + M + N + R + P = 0
Substitute x = - 1 in Lx⁴ + Mx³ + Nx² + Rx + P
L(- 1)⁴ + M(- 1)³ + N(- 1)² + R(- 1) + P = 0
L - M + N - R + P = 0
L + N + P = M + R
Substitute L + N + P = M + R in L + M + N + R + P = 0
M + R + M + R = 0
2M + 2R = 0
2(M + R) = 0
M + R = 0
Substitute M + R = 0 in L + N + P = M + R
L + N + P = 0
So L + N + P = 0 = M + R
HENCE PROVED.
NOTE:
Here Lx⁴ + Mx³ + Nx² + Rx + P is equated to zero because if x = - 1 (or) + 1 is a root of the equation, when substituted x = - 1 (or) + 1 the result should equal to zero.
• A quadratic polynomial Lx⁴ + Mx³ + Nx²+ Rx+P
• The zeroes of the polynomial are 1 and -1
• L + N + P = M + R
Given 1 and -1 are the zeroes of the polynomial
So:-
Substitute x = 1 in Lx⁴ + Mx³ + Nx²+ Rx+P
➪ L(1)⁴ + M(1)³ + N(x)² + R(x) + P
➪ L + M + N + R + P = 0..........(1)
Substitute x = -1 in Lx⁴ + Mx³ + Nx²+ Rx+P
➪L(-1)⁴ + M(-1)³ + N(-x)² + R(-x) + P
➪ L - M + N - R + P = 0
➪ L + N + P = M + R.......... (2)
Substitute equation (2) in (1)
➪L + N + P +M + R = 0
➪ M + R + M + R = 0
➪ 2(M + R) = 0
➪M + R = 0
From equation (2)
L + N + P = M + R = 0