Math, asked by Anonymous, 3 months ago

If 1 and -3 are zeroes of the polynomial p(x) = x^3 - ax^3 - 13x + b, find values of A and B ?
❤️ Dont spam please !! ❤️

Answers

Answered by telex
1428

Appropriate Question :-

If 1 and -3 are zeroes of the polynomial p( x ) = x³ - ax²-13x+b, find values of 'a' and 'b' ?

____________________

Solution :-

Given Information :-

  • p(x) = x³ - ax² - 13x+b,
  • 1 and -3 are the zeroes of p(x)

To find :-

  • The value of a and b.

Calculation :-

  • Firstly, finding the value of p(x) when 'x = 1'

⇒ p(1) = (1)³ - a × (1)² - 13 × (1) + b

⇒ p(1) = 1 - a - 13 + b

⇒ p(1) = - 12 - a + b

Now, Equating it to zero, We get,

⇒ - 12 - a + b = 0

⇒ - a + b = 12

b = 12 + a -------------------- Equation1

  • Finding the value of (x) when 'x = -3'

⇒ p(-3) = (-3)^3 - a × (-3)^2 - 13 × (-3) + b

⇒ p(-3) = -27 - 9a + 39 + b

⇒ p(-3) = 12 - 9a + b

Now, Equating it to zero, We get,

⇒ 12 - 9a + b = 0

-9a + b = -12 -------------------- Equation2

Substituting the value of Equation 1 in Equation 2, We get,

⇒ -9a + 12 + a = -12

⇒ -8a = -12 - 12

⇒ -8a = -24

\bf a= \frac{ - 24}{ - 8} = 3

∵ We know the value of a,

∴ We will substitute it in equation 1, We get,

⇒ b = 12 + 3

\bf{b = 15}

Values of a and b :-

  • a = 3
  • b = 15

____________________

Final Answer :-

  • The value of a is 3
  • The value of b is 15

____________________

Answered by TheBrainlyStar00001
81

\large{\underline{ \underline {\maltese \:  \: {\textbf{\textsf{Explanation :-}}}}}}\\

{ \underline {\maltese \:  \: {\textrm{\textsf{Given Info. :-}}}}}\\

\quad\bullet \:  \:   \underline{ \boxed{\tt{p(x) = x {}^{3}  - ax {}^{2}  - 13x+b}}} \:  \:  \bigstar

  • 1 and -3 are the zeroes of the polynomial_{p(x)}.

{ \underline {\maltese \:  \: {\textrm{\textsf{Exigency To find :-}}}}}\\

  • The value of a and b.

Finding the value of polynomial_{p(x)}, ( x = 1 ) :

\quad{\longmapsto \:  \: \tt{p(1) = (1)^3 - a × (1)^2 - 13 × (1) + b}}.\\

\quad{\longmapsto \:  \: \tt{p(1) = 1 - a - 13 + b}}.\\

\quad{\longmapsto \:  \: \tt{p(1) = - 12 - a + b}}.\\

Now,

\quad{\longmapsto \:  \: \tt{- 12 - a + b = 0}}.\\

\quad{\longmapsto \:  \: \tt{ a + b = 12 }}.\\

\quad{\longmapsto \:  \: \tt{ b = 12 + a }}.\\

[ Let it be Equation 1 ]

Finding the value of x (x = -3) :

\quad{\longmapsto \:  \: \tt{ p(-3) = (-3)^3 - a × (-3)^2 - 13 × (-3) + b }}.\\

\quad{\longmapsto \:  \: \tt{ p(-3) = -27 - 9a + 39 + b }}.\\

\quad{\longmapsto \:  \: \tt{ p(-3) = 12 - 9a + b }}.\\

Now,

\quad{\longmapsto \:  \: \tt{  12 - 9a + b = 0 }}.\\

\quad{\longmapsto \:  \: \tt{  -9a + b = -12 }}.\\

[ Let it be Equation 2 ]

Substituting the known value of ( 1 ) in ( 2 ) :

\quad{\longmapsto \:  \: \tt{  -9a + 12 + a = -12 }}.\\

\quad{\longmapsto \:  \: \tt{  -8a = -12 - 12 }}.\\

\quad{\longmapsto \:  \: \tt{  -8a = -24 }}.\\

\quad{\longmapsto \:  \: \sf{  a= \frac{ - 24}{ - 8} = 3 }}.\\

Then, substituting it in ( 1 ) :

\quad{\longmapsto \:  \: \tt{  b = 12 + 3 }}.\\

\quad{\longmapsto \:  \: \sf{  b = 15 }}.\\

∴ Values of :

  • a ⇝ 3
  • b ⇝ 15

✰ ─╼━━━━━━──╼━━━━━━─ ✰

Similar questions