If 1 and -3 are zeroes of the polynomial p(x) = x^3 - ax^3 - 13x + b, find values of A and B ?
❤️ Dont spam please !! ❤️
Answers
Appropriate Question :-
If 1 and -3 are zeroes of the polynomial p( x ) = x³ - ax²-13x+b, find values of 'a' and 'b' ?
____________________
Solution :-
Given Information :-
- p(x) = x³ - ax² - 13x+b,
- 1 and -3 are the zeroes of p(x)
To find :-
- The value of a and b.
Calculation :-
- Firstly, finding the value of p(x) when 'x = 1'
⇒ p(1) = (1)³ - a × (1)² - 13 × (1) + b
⇒ p(1) = 1 - a - 13 + b
⇒ p(1) = - 12 - a + b
Now, Equating it to zero, We get,
⇒ - 12 - a + b = 0
⇒ - a + b = 12
⇒ b = 12 + a -------------------- Equation1
- Finding the value of (x) when 'x = -3'
⇒ p(-3) = (-3)^3 - a × (-3)^2 - 13 × (-3) + b
⇒ p(-3) = -27 - 9a + 39 + b
⇒ p(-3) = 12 - 9a + b
Now, Equating it to zero, We get,
⇒ 12 - 9a + b = 0
⇒ -9a + b = -12 -------------------- Equation2
Substituting the value of Equation 1 in Equation 2, We get,
⇒ -9a + 12 + a = -12
⇒ -8a = -12 - 12
⇒ -8a = -24
⇒
∵ We know the value of a,
∴ We will substitute it in equation 1, We get,
⇒ b = 12 + 3
⇒
∴ Values of a and b :-
- a = 3
- b = 15
____________________
Final Answer :-
- The value of a is 3
- The value of b is 15
____________________
- 1 and -3 are the zeroes of the polynomial.
- The value of a and b.
Finding the value of polynomial, ( x = 1 ) :
Now,
[ Let it be Equation 1 ]
Finding the value of x (x = -3) :
Now,
[ Let it be Equation 2 ]
Substituting the known value of ( 1 ) in ( 2 ) :
Then, substituting it in ( 1 ) :
∴ Values of :
- a ⇝ 3
- b ⇝ 15